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Abstract

We consider a single-step Lagrange Multiplier (LM) test for joint breaks (at known or unknown
dates) in the long memory parameter, the short-run dynamics and the level of a fractionally
integrated time-series process. The regression version of this test is easily implementable and
allows to identify the specific sources of the break when the null hypothesis of parameter stability
is rejected. However, its size and power properties are sensitive to the correct specification of short-
run dynamics under the null. To address this problem, we propose a slight modification of the LM
test (labeled LMW-type test) which also makes use of some information under the alternative (in
the spirit of a Wald test). This test shares the same limiting distribution as the LM test under
the null and local alternatives but achieves higher power by facilitating the correct specification
of the short-run dynamics under the null and any alternative (either local or fixed). Monte Carlo

simulations provide support for these theoretical results. An empirical application, concerning
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the origin of shifts in the long-memory properties of forward discount rates in five G7 countries,

illustrates the usefulness of the proposed LMW-type test.

JEL Classification: C13, C22
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1 Introduction

The confoundedness issues raised by Diebold and Inoue (2001) and Granger and Hyung (2004)
have sparked controversy about the origin of long-memory features in some time series processes.
Part of this debate has focused on whether long-memory is truly driven by a fractionally integrated
process of order d, I(d), or spuriously generated by level shifts in short-memory time series instead
(see, e.g., Lobato and Savin (1998), and Perron and Qu (2010)). Conversely, it has been claimed
that breaks in the memory parameter d could be misleadingly interpreted as breaks in the level,

i, of this type of stochastic processes (see, e.g., McCloskey (2010), and Shao (2011)).

These different views have led to two strands of research on this topic (for a general overview,
see Aue and Horvath 2011). The first one deals with testing for breaks only in d. Following the
rationalization of I(d) processes in terms of aggregation of heterogeneous persistent processes (see
Robinson 1978, and Granger 1980), it has been argued that policy regime changes can shift the
long-memory component of many macro and financial variables over relevant subsamples (see, e.g.
Gadea and Mayoral, 2005, for empirical evidence on these shifts in inflation). Accordingly, several
tests have been proposed (both in the time and frequency domains) to test the null of a stable
value of d against the alternative of a structural break at known or unknown dates; see, inter alia,

Beran and Terrin (1996), Hassler and Scheithauer (2011) and Yamaguchi (2011).

In parallel, another line of research has focused on the derivation of tests for breaks only in the
level u (or in other deterministic components) of stochastic processes with stationary long-memory
disturbances where d is constant; see, e.g., Hidalgo and Robinson (1996), Lavielle and Moulines
(2000), and Tacone et al. (2013). Lastly, there are also studies on the design of robust estimation
procedures of the memory parameter in the presence of level /trend shifts (see, e.g. McCloskey and
Perron, (2013)).

A common feature in most of the above-mentioned literature is that breaks are only allowed in
a single parameter (either in d or p). However, the more realistic case of potential joint breaks in

both parameters, and possibly in the short-run dynamics of an I(d) process, has received much less

!Forerunners of this line of research are Kim et al. (2002), Busetti and Taylor (2004), and Harvey et al.
(2009) who test for changes in time series from being I(0) to being I(1) or viceversa. Multiple changes are
tackled in Leybourne et al. (2007) and Kejriwal et al. (2013).



attention. This is somewhat surprising since, following the detection of a break, it is important to
find out if its origin comes from only one or several parameters at the same time.? Among the scant
literature on this specific issue, there are a few contributions related to ours to be highlighted. To
our knowledge, Gil-Alana (2008) is the first paper to propose a single-step testing procedure based
on a Chow F-test. Yet, despite conjecturing that its limiting distribution corresponds to the one
derived by Bai and Perron (1998) for parameter breaks in regressions involving I(0) series, no formal
proof of this claim is provided. Next, Hassler and Meller (2014) have extended Robinson (1994)
and Breitung and Hassler’s (2002) LM test of I(1) vs. I(d) to deal with breaks in d, where level
shifts are also allowed. Their proposed test is conducted in a two-step sequential fashion. Initially,
the location of the mean break is detected using Hsu’s (2005) semiparametric testing approach;
next, the corresponding broken mean is removed from the time series to test for a break in d.
However, the issue of how the two-step procedure affects the asymptotic properties of the test is
not analyzed by these authors. This could be problematic in some instances: for example, p could
be very imprecisely estimated at the demeaning stage when d is close to 0.5, due to the TV/2~% rate
of convergence of the sample mean estimator. Some of these shortcomings have been addressed
by Rachinger (2017), who proposes a unified (single-step) testing procedure for modelling joint
breaks. As in Gil-Alana (2008), this author extends Bai and Perron’s (1998) test from (0) to I(d)
processes by proposing a Likelihood Ratio (LR) version of the standard Chow test for the null of
parameter stability of d and p when d € [0,0.5). Consistency results, T-rate convergence of the
break fraction estimator and the limiting distributions of the estimated parameters under different

sources of breaks are derived.

Our main goal in this paper is to propose LM alternatives to the LR test for joint parameter
breaks in I(d) processes because the use of restricted estimates under the null makes LM tests
computationally much simpler. In particular, as in Hassler and Meller (2014), we focus on the
derivation of a regression version of the LM test which provides a linearization of the true model
under local alternatives involving parameter breaks. Yet, we differ from their approach in several
important respects. First, to address the shortcomings of their two-stage procedure, we derive
a single-step LM testing procedure. Second, in addition to breaks in d and p, we also allow
for shifts in the short-run dynamics of an I(d) process, which are modelled using a parametric

autoregressive process of order p, labeled AR(p).> A potential limitation of the LM test, however,

?Dolado et al. (2008) argue that it is important to distinguish between breaks in d and in p for at least
two reasons. First, because it can improve forecasting; in particular, the larger d is, the more observations
are required to produce good forecasts. Second, because if d is estimated too high due to shifts in y in

bivariate systems, fractional cointegration could become a spurious outcome.
3 Although a semiparametric approach would help us abstract from short-term dynamics when estimat-

ing d, we opt here for a parametric approach due to our interest in identifying further potential breaks in
the short-term dynamics. We choose an AR(p) process to model short-run dynamics because this type of



is that its implementation requires the restrictive assumption of a known lag length of the AR(p)
process under the null, which might not be the correct one under the alternative. Inspired by
Wooldridge (1990), we fix this problem by means of an alternative regression-based LM test which,
besides yielding consistent estimation of p when parameters are allowed to shift, exhibits higher
power than the LM test for joint breaks under fixed alternatives. The insight for this power gain
is that, unlike the local approximation provided by the LM test, the new test yields an exact
regression representation of the true model specification under any alternative (local or fixed),
where the relevant coefficients to be tested happen to be linearly related to the parameters of
interest. As a result, it can also be partially interpreted as a Wald test and, for this reason, it is

labeled "LMW-type" test in the sequel.

LMW-type tests have been proposed by Dolado et al. (2002, 2009), and Lobato and Velasco
(2007) to test the nulls of 7(1)/I(0) against the alternative of I(d) processes, with d € (0,1) under
the assumption of parameter stability. We extend their testing approach by allowing for joint
breaks in d, p and the short-run dynamics when the null is an I(d) process with stable parameters.
Moreover, both LM and LMW-type tests can deal with shifts in d € (—0.5,0.5) under the alternative
hypothesis, covering a wider range of values than those considered by Rachinger’s (2017) LR tests.
This generalization can be achieved because the only requirement for implementing our LM tests
is adequate performance of the constrained estimators of the parameters under the null, whereas

LR tests also require good performance of the unconstrained estimators.

Summing up, by deriving single-step LM and LMW-type tests (and their asymptotic distribu-
tion under the null and alternatives), this paper contributes to the relevant literature on detecting
the source of breaks in persistent time-series processes. More concretely, the proposed tests: (i)
allow to test for the presence of joint or individual breaks in a wide range of parameters, involv-
ing non-stable long-memory dynamics, short-run dynamics or the level parameter; (ii) are easily
implementable by means of regression methods under the joint null of parameter stability; (iii)
exhibit similar asymptotic behaviour under the null and local alternatives but the LMW-type test
has higher power under fixed alternatives, especially when short-run dynamics are present;* (iv)
provide consistent estimates of the break date when considered to be unknown; and (v) can be used
when either breaks in different parameters might not be coincidental in time or when there are
multiple breaks. Finally, our empirical application on potential breaks in forward discount rates
for several G7 countries provides new findings on their origin (in dynamics and/or in levels), an

issue which has raised considerable attention in the literature on exchange rates.

The rest of the paper is structured as follows. In Section 2, we lay out the data generating

process can be easily incorporated in the regression version of the LM tests.
4Notice that, in spite of the nonlinear nature of our proposed tests, this result somehow echoes the

well-known ranking in terms of power of Wald and LM tests in linear regression setups; see Engle (1984).



processes (DGP). In Section 3 and Section 4, we derive the LM and LMW-type tests, respectively.
Sections 5 and 6 are devoted to study their asymptotic properties both under the null and under
local and fixed alternatives, distinguishing between two different settings: known and unknown
break dates, and briefly sketch how the tests could be generalized to account for non-coincidental
and multiple breaks in time. In Section 7, we provide simulation results regarding the finite-sample
performance of the tests. In Section 8 we discuss an empirical application related to the detection
of structural changes in the forward discount of exchange rates. Finally, Section 9 concludes. All
the proofs, some technical results, and additional simulation results are gathered in an Online

Appendix.

2 Data generating process

For simplicity, we start by considering the case of a single breakpoint (at a known or unknown
date) which changes in the asymptotics as a fraction Ay of the sample size; Ay lies in the interval
A = [e,1 — €], where € > 0 is assumed to be known. In particular, we consider an autoregressive
I(dy) (i.e. ARFI (p,d)) process with long memory parameter dy € D, where D C (—0.5,0.5),
level 1y and short-run dynamics captured by a finite order AR lag polynomial ag (L) during the
first subsample, ¢ = 1,...,[AoT]. This process may become I (di) with d; € D, level u; and
autoregression o (L) during the second subsample, t = [\gT] +1,...,7.> These assumptions lead

to the following transition model, considered as the DGP in the sequel
ar (L) AF (ye — ) =&, t=1,2,..., (1)
with &; ~ 1.i.d.(0,03). The shifting parameters are defined as:

a (L) A = 1(t <[TAo])ag (L) AP +1(t > [TAo)) an (L) A,
py = 1(t < [TAo]) po + 1 (¢ > [T'Ao]) i1,

where 1(+) is an indicator function of the relevant subsample; [z] denotes the integer part of x;

and o; (L) =1—ai;L--- — ap,;LP are stable AR lag polynomials of known order p with unknown

/

coefficients a; = (v14,...,0p4), ¢ = 0,1, such that a; € Int (A) where A is a compact set such

>Our choice of the stationary and invertible range D C (—0.5,0.5) is dictated in part by the result in
Hualde and Nielsen (2019) showing that consistent estimation of the level in an ARFIMA (p,d, q) process
with a constant term (y, = 1, in their notation) and d lying in an arbitrarily large finite interval requires
d < 0.5. However, when d > 0.5, the estimates of the other parameters governing the dynamics of the process
are consistent and asymptotically normal, as in Hualde and Robinson (2011). Remark 4 below includes a

further discussion about the implementation of our tests when dg,d; > 0.5.



that all the roots of a; (L) are outside the unit circle.® At [A\gT7], a shift in the parameters of the
DGP in (1) is allowed, so that di = dop + 6o, p; = pg + vo, and a1 (L) = ap (L) + By (L), where

Bo (L) is another lag polynomial with 3, (0) = 0 and coefficients By = (81, - - - ,,Bpp)/. Finally,
Ab = ji(l) 7;(b) L7, where 7; (b) := %, j=0,1,..., denotes the (truncated or "Type II")
fractional-differencing filter for b € D. It should be noted that Hualde and Nielsen (2020) have
previously analyzed the estimation and inference of a similar process to DGP (1) with more general
short-run dynamics than the AR(p) process assumed here, but with stable parameters. To relax
this last assumption and provide inference on the existence and location of a break, our proposed

LM approach relies on restricted-parameter estimation under the null of no breaks.

Remark 1. Notice that the previous definition of Af" implies that the filter applied to (y; — ;)

is Z;;é 75 (do, ap) when ¢ < [AoT7], and Z;;é 77 (di, 1) when ¢ > [T'A], where o; (L) A% =

— 7% (d;, ;) L7. We prefer to use this truncate ype er, rather than a non-truncate
47 (di, @) L. We prefer to use this truncated "Type II" filter, rather th truncated
"Type-1" filter, because it facilitates the treatment of non-stationary series with d > 1/2 after first

differencing (see Remark 4 below).

Remark 2. Notice that, by rewriting the DGP as y; = u, + (1 —ay (L) Aft> (y+ — py) + €¢, and

using the truncated filters W}f (d;, ;), i = 0,1 recursively, it follows that

t—1
Y = o — Zﬂj (do, o) {ys—j — po} +e¢, for t < [TAo]
j=1
t—[TXo]—1 t—1
wo= = Y mne){y—mb— S w(dien) (s — ok + e fort> [Thgl,
J=1 J=t=[T'Ao]

implying that the chosen filter guarantees that the lags of y; in the autoregression are centered
around the appropriate value of the level i, in each of the two subsamples. Likewise, it ensures
that all past information is discounted at the relevant value of d to generate each new observation

before and after the break.

Remark 3. An alternative DGP that could be considered is the following
yr =y + Ay %o (D)ey, t=1,2,...,
with &; ~ i.i.d.(0,03), such that

A% (D) = 1(t

IN

[Tho]) Ay ®agt (L) + 1 (8> [Th]) Ay “ap (L),
pe = 1< [Tho])po +1(t> [TAo]) pa-

Formally the previous expression for the filter oy (L) A% should be multiplied by 1(¢ > 0) since nesting
the AR(p) lag polynomial oy (L) with the truncated fractional filter A% would require using pre-sample

observations (negative lags). However, for simplicity, we omit this more precise notation in the sequel.



Rather than based on an autoregressive representation as in (1), this DGP (labeled DGP-MA to
distinguish it from DGP (1)) provides an alternative definition of a breaking stochastic process
based on a moving average that reweights in each period the whole sequence of innovations from
t = 1 but ignores how the observations were actually generated prior to t. Although we show that
our proposed tests are also consistent under local or fixed alternatives for DGP-MA (see Corollaries
2 and 3 below), we prefer to work with the autoregressive DGP (1) on the grounds that, while the
level of g, is adjusted immediately after the break in both DGPs, DGP-MA reinitializes completely
the process after the break, i.e. y; = py + A% a7t (L)e; for t > [AoT)] does not depend on do.
Instead, under DGP (1), observations y; for t = [A\gT]+1, [AoT]+2,...,T are generated by filtering
all (centered) past observations with the new memory value dj, so that for ¢t > [A\g77],

_ A*dl A*d1 Agl_do A*dl -1 L
yt - lu’]_ - ( t - t—[TAo]) mgt + t—[T)\O}O[]- ( )€t7

where the first term on the RHS accounts for innovations prior to the break and the second term
for the ones afterwards, which are treated in the same way in both DGPs. Further, DGP (1) is
more amenable to analytical and numerical analysis because, in practice, the easiest way to obtain
residuals is to use autoregressive fractional filters on observed data, which are easily computed by
means of fractional differencing. By contrast, DGP-MA requires the use of a more complicated
recursive procedure based on implicitly defined residuals. In effect, aq (L) A% (y; — ;) # & for
t > [AoT] when data are generated by that DGP, as this filtering ignores that observations were
integrated with do up to ¢t = [A\gT"]. Power comparisons of the tests for data generated under either

DGP are provided in Section 7 (Block (III)) showing that differences are minor.

Remark 4. Our approach can also deal with a non-stationary process with both dy, d; > 0.5, and

a potentially breaking linear trend, such that
at(L)Aft (ye — py — G4t) = &,

with ¢, = (ol (¢ < [AT])+¢ 1 (t > [MoT]), by applying our testing procedure to the first-differenced
data, Ay, to test for breaks in the trend slope (; and in the memory d; — 1. To provide initial
consistent estimates of non-stationary values of d under the null, one possibility is to use Hualde
and Nielsen’s (2020) estimation procedure for I(d) processes (with d lying in an arbitrarily large
interval). Once this initial estimate is first differenced, our proposed tests in a stationary setup

would be valid.

In sum, using the previous notation for potential shifts in the memory parameter (), the
stable AR component (3;) and in the level (vg), and labeling the dummy variable for the second

subsample (regime) as R; (A) = 1 (¢ > [AT]), the following model will be considered in Sections 3



and 4 to develop our testing procedures (under coincidental breaks),”

(a0 (L) + Re (Ao) By (L)) APHRC) (4 pig — woRy (M) =, t=1,...,T.

Remark 5. It is important to highlight at this stage that the assumption of known lag length p
under the null of no break in the short-memory parameters could be highly restrictive. In effect,
if the chosen p is not the right one, this could lead to incorrect inference about the existence of
breaks. In practice, following Schwert (1989), Hassler and Meller (2014) argue that many short
memory processes can be approximated by letting p grow with T', e.g. according to the rule of
thumb: p = [4(T/100)'/4]. However, unlike us, these authors do not allow for breaks in the AR
polynomial a(L). Hence, for analytical tractability, the derivation of the asymptotic distribution
of the LM test will proceed momentarily under the assumption of known p, while later it will be

shown that the use of the LMW-type test avoids such a restrictive assumption.®

3 Score-driven and regression-based LM tests
According to the LM principle, we test the null hypothesis:
HO : (9071667 VO) = 07 (HO)

against the alternative hypothesis where all parameters are allowed to shift at a fraction Ag of the

sample size, which for the moment is assumed to be known:

Hi(Xo) : (6o, By; vo) # 0. (H1)

From (2), the following Gaussian pseudo-log-likelihood function is used
T 1
— 2 2
£T (1/}’ )‘) - _5 IOg (27TU ) - 202 ;Et (¢7 )‘) ) (2)

for every possible breakpoint A, and ¢ = (9, B,v,d, o, pu, 02)/, where the definition of the error

term above is given by

2t (4, 0) = (a0 (L) + By (V) By (L)) (85O (g — pg) —var{ O, ().

TAn equivalent representation yielding identical results would be to consider the model
(a1 (L) = Si (o) By (L)) AP %P0 (4 — ) + 105, (o)) = &, with Si(A) =1 — R,(A) = 1(t < [AT]).

8]deally the number and location of breaks, and the number of autoregressive lags of the time-series
processes should all be chosen simultaneously, but this is well beyond the scope of the paper. Thus, it is
preferable to shape our approach for break testing as being robust to the choice of p by taking it large
enough as to provide a good fit, but without allowing it to grow with T since this would not only involve a

completely different asymptotic theory but also affect the power properties of the proposed LM tests.

8



For each A, the LM test is based on the derivatives of L7 (¢, \) in the direction of v, evaluated
at the restricted estimates {bT =(0,0,0, dor. ahrs [AOT,(}%T)’ . The last four elements of TZ)T denote
estimates of parameters dy, o, pg and a%, respectively, under the null of no breaks, where the
whole sample of observations, t = 1,..., T, is used to obtain such estimates.” In particular, the

score-driven formulation of the LM test becomes

; (3

~—

ALy (w,»’ (_ 0Ly (1, N)
w:"Z’T

-1
__ Ly (P, A)
LMT<)\) - 8¢/ 8wa¢/ ‘w:&]T)

aw 'w:"ZT
where the score in the directions of #, 8 and v can be expressed as

AL (1, \) 1 &

Lor(\) = | . == D (log Ay &
b=t or t=[AT]+1
~—1 ~
« (L) Et—1
; _ @ N L s [ .
B,T (A) - 8,8 .= _5_2 Z Et
waT 0T — ~_ ~
t=[\T]+1 aTl (L) Eip
T
5 oL A 1 . 7 _
Lyr(N) = Ta(;b) ) Z (ar (L) A?ET[AT]D&'
=ty 0T y_[\7)41
In the previous expressions, log A&, = — Z;;ll GTLE j depends on the restricted residuals &; which

are defined as follows

2 = (W) = ar (L) ADT (g — figp), t=1,2,...,T, (4)

while their corresponding variance estimator is given by

- 1 -
U%T:fzgf- (5)

As mentioned above, the restricted estimates of the parameters required to compute &; result from

minimizing the conditional sum of squares (CSS) over the whole sample,

~ - - . T d 2
(dor-Gar.for) =g, gmin, 3= (o () AF (0= 1) (©)
The properties of dyr have been discussed, inter alia, in Chung and Baillie (1993), Robinson (2006)
and Hualde and Robinson (2011) in models without drift (¢ = 0), and in Hualde and Nielsen (2020)

when there is a drift.!0

9See below for why the whole sample, rather than the first subsample, is chosen, and for further details

on the estimation procedure.
19Tn particular, Hualde and Robinson (2019) show that the estimators doz and é&or are T'/2-consistent

and asymptotically normal for dy € Int (D) and ag € Int (A), while figy is T*/?~%-consistent.

9



The relevant block of the inverse Hessian matrix concerning the subset of parameters (0, a3, 1/)
of ¥ can be approximated (using the arguments in the proof of Theorem 1 below) as

-1

O*Lrp (%}\)‘ - _ Bo1/2 Ly (Y, ) 5 1/2
( awawl w:ﬂ)T =P 6(976/’y),6(9,ﬁ/’y) L/):QZ} P (1+0P (1))7

[1:(2+p),1:(2+p)]

where Py is a scaling matrix defined as

~ ) AL 0
Pr = Pr <>\; dOT) = 0 Lr (dorid\)—L2.(dor00) | (7)
LT(JOT;A,A)

which captures the effect of replacing the unknown values of dy, g and i, by their (restricted) es-
timates, where L7 (d;a,b) = T2 (1 — 2d) T2 (1 — d) ZtT:[max(a,b)T]H(Af—[aT}1)(Af—[bT]) and Ipq

is a p+ 1 dimensional identity matrix.

As in Breitung and Hassler (2002) test, the previous LMy () test statistic has a simple re-
gression model representation, where the underlying regression provides a linearization of the true
model under local alternatives involving parameter breaks. The regression-based version of the LM
test is equal to T' times the coefficient of determination R2 ()\) in a linear regression model of the

restricted residuals &; on the scores of the general model, namely,
Er=mng+ n’)\Zt(p) (A + n’ZZt(p) (0) + errory, ()
: > (p) _ (@ o= = :
with the vector Z;" (X\) = Z;" ( A\, dor, &or, figy ) being defined as
Ry (M) log Ayey (0,0°,0,d, a, 1)

Zt(p) A\ d, o, ) = {Rt (N Af_j (Ye—j — 1) }::1
a (L) AYR; (N)

where the role of the regressor Zt(p ) (0) = Zt(p ) (0, ciOT, aor, ﬁ0T> is to control for the effect on the

test of having estimated parameters under the null of no breaks.

Finally, when the break date is taken to be unknown, the corresponding LM test becomes

E]\VIT (XT) = ?\ZKWT N,

where, as defined above, A = [e,1 — €], and Ar = argmaxyep LM (A).

4 Regression-based LM W-type tests

As an alternative to the LM test based only on the restricted ML estimates, an LMW-type test

(based on an auxiliary regression using information under the alternative) can be derived along the

10



lines of Lobato and Velasco (2007). Building upon previous results by Dolado et al. (2002), Lobato
and Velasco (2007) derive an Efficient Fractional Dickey Fuller (EFDF) test for the null hypothesis
of d = 1 against the alternative of d < 1, which was later extended by Dolado et al. (2009) by
allowing the null to be any memory d = dp against the alternative d # dg. These authors show
that, despite their asymptotic equivalence under local alternatives, the EFDF test could achieve
higher power under fixed alternatives than the conventional LM test because it provides a better
approximation of the DGP in such a case (see Remark 6 below). In line with these findings, our
strategy here is to propose a similar test statistic designed to allow for joint breaks in d, o and u,

where the null hypothesis is given by (HO) above.

For simplicity, we start with the case where the break date Ao and the parameters dy, oy and
Lo are all assumed to be known. Thus, under shifts, the data for t = [TAo] +1,...,T is generated
by a1 (L) A% (y; — ;) + €1, which satisfies

ao (L) A (ye — 1o) = a0 (L) AF (ye — Ho) — an (L) AP (ye — ) + &
— a0 (L) [L— AP] AP (31— i) + B (E) AL (3 — o — voR ()
+ro0g (L) A?l R; ()\0) + &¢,

where recall that dy = dy+ 0o, a1 (L) = oo (L) + By (L) and g = pg+ vo with g, = pg+ voRe (M)
and AJR; (A) = U010 <t — [TA) 75 (d) = S0 7y (d) = w1 (d— 1) Then, a test
for the joint null of (00,,@0, V()) = 0 in (HO) can be constructed by means of testing the following
null hypothesis

Hy:01=02=--=024,=0
in a regression given by
PN

| A e o) ©

ao (L) AP (ye — 1g) = ﬁlao(L)[

p
+ Z Vi1 Ri—j (N) A(tiij (Yt—j — o — voRi—j (N))
j=1
+9p1000 (L) A" Ry (A) + &4,

for t = 1,...,T, and each \. Denoting © = (01,92...,921,) , €) = ag (L) A% (y; — 119) , we define
Xt(p) (\) = Xt(p) (N, 0,v,.d, &, ) for each (N, 0,v,d, e, ),

7A5Rt(>\)
o (L) [%} A (e — 1)
P
X (O wdalop) = | {B A g == vRe 0D}
a(L) Ai”oRt (A
so that regression (9) can be rewritten in a more compact way as
=0’ X2 (\) + ¢, (10)

11



with X2 (A) = X (X, 60, vo, do, o, o) -

Remark 6. Note that the implementation of the LMW-type test based upon regression (10) is
closely related to the regression-based version of the LM test since the artificial regressor Zt(p ) (N
used in (8) corresponds to the limit of Xt(p ) (A) as 0, — 0.!' Hence, while the regression-based
LMW-type test provides an exact representation of the DGP under local and fixed alternatives,
the LM test only provides an accurate approximation under local alternatives. As a result, the
limiting behaviour of both tests will be identical under local alternatives but it will differ under

fixed alternatives (i.e. when 6,v - 0).

Remark 7. As pointed out in Remark 5, the LM test fails to provide direct information on
whether the choice of the lag length p ensures i.i.d. innovations under fixed alternatives. However,
this is not a problem for the LMW-type test which, by making use of additional information under
the alternative, is able to yield i.i.d. residuals under both the null and the alternative, leading to
potential power gains relative to the LM test. Subsection 6.1 below provides further details on how

to choose p when implementing the LMW-type test.

Under the more realistic assumption of unknown dy, g and pi, running regression (10) requires
the estimation of these parameters (on top of # and v). With regard to dy, ctg and p, our suggestion
is to use the restricted estimates dgr, éor and jigy obtained from minimizing (6) under the null
with observations for the whole sample. This facilitates comparisons with the LM test that uses
the entire sample to compute these estimates under the null.'> As regards the estimation of § and
v, one can set O (\) = dip (\) — dor and o7 () = fiyp (A) — figr where dip () and fi;p (M) are
this time the CSS estimates using observations from the second subsample. Hence, from (11), this

procedure implies the following feasible regression representation of the LMW-type test
g =X (\) +e (11)

where the restricted residuals & = &or (L) AgOT (yt — figr) are regressed on th(p) (A = Xt(p)()\,
O7(\), o (N), dor, &or, figr)-

Testing for breaks in all the parameters corresponds to testing the joint null hypothesis of
V1 =vg =--- =024, =0in (11). Likewise, testing for a break in only a subset of the parameters
can be easily accommodated. For example, a test for a break only in both memory and short-run
dynamics (resp. only in p1) corresponds to testing the null hypothesis of ¥ = -+ =914, = 0 (resp.

Y24p = 0).1% Thus, from regression (11), the LMW-type test statistic for the joint hypothesis

1 As pointed out in LV (2007), notice that, for § — 0, the filter {1_0Af} becomes — log A; when 6 — 0,

which corresponds to the well-known lag filter 22;11 k~1L* used in the regression-based LM test.
12Tn addition, as will be illustrated in our simulation study, the size in finite samples of the LMW-type

test becomes closer to the nominal size when the whole sample is used.
13 As before, note that if only a subset of the parameters is assumed to shift, a test not allowing for a
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Hy : © =0 is defined as
LMWy (A) =07 (\) Vit (\) 61 (V) (12)

~ ~ ~ /
where O (A) = (191T (A), P21 (A) 5 ooy Vogpr ()\)) denotes the LS estimate of ©, while

T —1
Ve (A) =63 (\) By (Z X® () X" <A>’) P?
t=1

denotes its variance estimate.!* The error variance 62 ()) is obtained as

[T T

) 1 A ; N2 1 X : N2

&5 (N) = T Z (aOT (L) APT (g — MOT)> T Z (041T (L) AfiT[T)\] (yr — M1T)> (13)
=1 t=[TA+1

which corresponds to estimation under the alternative, as the LS estimates O (\) of regression
(11) reproduce (9T (A, éar (\) — &or, U1 (A)) to match the CSS estimators <CZOT, &OT,ﬂOT) and
<cf1T, aqr, ﬂlT) for the first and second subsamples, respectively. As a result, the regression-based
LMW-type test can be computed as T times the R? of regression (11) augmented by Xt(p) (0) to

account for the estimation effect of the different parameters required to compute (12).

Finally, as with the LM test, the LMW-type test statistic for unknown break date becomes

—_—

sup LMW (\) = LMW1 (Ar),
AEA

P

where Ay = arg maxyep LMW ().

5 Asymptotic properties of LM tests

5.1 Asymptotic theory of LM tests under local alternatives

We next derive the asymptotic distributions of the proposed 17]\\4/T tests under the following set of

assumptions:

Assumption 1. The true lag length p of the stable short-run dynamics AR polynomial (L) is

known.

break in the non-tested parameter again should enjoy better finite sample properties (e.g. setting py = 1
or v =0 1in (9) when testing for a break in the dynamics, that is Hy : ¥ =¥ = ... = U914, = 0).

YTn the case when (do, a, j1y) are taken as known, it follows from the discussion in Wooldridge (1990)
and LV (2007) that the estimation of (6,v) by (éT (A, or ()\)) does not affect the limiting distribution of
the LMW-type test in (10) under the null. However, this is no longer true when (dy, a, p4y) need to be
estimated since these estimates affect the dependent variable in regression (11), increasing the variance of
the LMW-type test statistic. This is reflected by the need to pre- and post-multiply by ]3%/ % in the definition

of Vi (M) compared to the usual least-squares expression.
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Assumption 2. ¢; ~ i.i.d. (0, 0(2)) with ¢ moments such that ¢ > max{4, ﬁ}

Assumption 3. dy € Int (D), D = [d,(ﬂ, —05 <d<d<0.5, ag € Int(A), where A is a
compact set, and Ag € A.

As pointed out in Remark 5 above, Assumption 1 is adopted here for convenience: it just to
facilitates a direct comparison of the asymptotic distributions of the LM and LMW-type tests,
which will be shown to be identical under the null and local alternatives (see Theorem 2 and
Proposition 5 further below).!> By contrast, this assumption becomes redundant when deriving
the properties of the LMW-type test, which provides a consistent data-driven choice of p under the
null and alternative (see Subsection 6.1 below). For the specific case of dy € Int (D), Assumptions
2 and 3 are equivalent to the conditions required by Hualde and Nielsen (2020) in their treatment
of the more general setup where dy lies in a compact set which can be arbitrarily large, but where
no breaks are considered. Lastly, as in in Marinucci and Robinson (2000), Assumption 3 reflects

that at least four moments are required to prove tightness for weak convergence.

To derive the asymptotic null distribution and local power of the LM test, we analyze its

properties under the following sequence of local-break alternatives,
Hﬁv%uu (}\0) . (90’ ﬁé’ VO) — (6/T1/27 7,/T1/2’ n/T1/2_d0> , (14)

for some Ag € A, where v = (’yl, ... ,'yp)’, and the null is recovered by setting (d,4',17) = 0 while

leaving A\g unspecified.

We next derive the asymptotic distribution of the LMy test in (3) in the case of an unknown
break fraction A, which is a function of both standard Brownian Motion (BM) and fractional BM
(fBM).

Let & = (K1, ..., kp) with rj, = Z]Oik i tej_k,k=1,...,p, where the ¢; are the coefficients of
L7 in the expansion of 1/ag (L), and ® = {®y;}, P, = > ooy CtCiylk—j|, K, = 1,...,p, denotes

the Fisher information matrix for a under Gaussianity. Further, let

72/6 K
o Obiy) — SV (B0 “)‘AB”“(l)HE(i) (A(1=20) = (A= 20),), E= ( H/6 y >

where By, is a (p + 1)-dimensional standardized BM.

Next, define

A, (N 3,7) = @p (A, 6,7) 7 w, (A, 6,7)

1
A(l=X)
and
Wy, (1 = X) = L(dp; 0, \) Wy, (1) + a (L (do; X\, Ao) — L (do; 0, Ao) L (do; 0, )\)))2
L (do; A\, \) — L? (dp; 0, \) ’

"42 (dOa )\7 (L) =

15Tn addition, this assumption helps define the robustified versions of the two tests to the true source of

the break under the alternative (see Subsection 5.2.1 below).
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where L (d;a,b) = (1 — 2d) filax(%b) (s —a) (s —b)"%ds (so that L(d;a,a) = (1—a)'"* and
L (0;a,b) = 1—max (a,b)) and Wy, (A\) = (1 — 2d0)1/2 fo)\ (A — s)"% dB (s) is the standard fBM (so
that Wy, (1) has unit variance and Cov(Wy, (a) , Wa, (b)) = (1 — 2dp) Omin(a’b) (a—s)" " (b—s)Tds =
L(do;1—a,1—b)).

Then, the following result holds.

Theorem 1 With an unknown break fraction Ao, under Assumptions 1, 2 and 3 and Hyp (o),

AT d 0 0 n/oo
sup LMt (A —>sup{A Ao,y)+ A (d A, )},
AEA () AeA dp (% 0,7) m\"0 T = 2do0 (1 —do)

where the two terms on the right hand side are independent.

Remark 8. The asymptotic distribution of the sup—m 7 (A) test under Hy is then given by

sup {.Agjp()\, 0,0) + ./42 (do, A, 0)} .
AEA

Since the break fraction is not identified under the null of no structural breaks, the distribution
above is non-standard. Besides, it only depends on dp, but not on Ag, cg or p. Critical values
of such limiting distribution are reported in Table 1 for a grid of values of dg and € generated as
in Theorem 1 above, using 10,000 grid points for the break fraction and 100,000 simulations. To
compute the critical values for an unknown dy, we interpolate between these values and replace dy

by dor as in (6) (see Giraitis et al. (2006) for a similar solution).

[Table 1 about here]

Remark 9. Under local alternatives, the two components Ag’p and Ag in the asymptotic dis-
tribution of the sup-LMp (\) test capture the contributions of the local shifts of the dynamics
parameters and of the level, respectively.!6 It is noteworthy that, while the term A&p (A, 0,7)
is symmetric around the break fraction A9 = 0.5, the term .Ag (do, A\, n/(c0v/1=2doI (1 — dp)))
happens to be positively (resp. negatively) skewed if dyg > 0 (resp. dp < 0). Hence, when there
is only a break in (d, '), the local power of the sup-LM (A) test is maximized for A\g = 0.5. In

16 Note that the limit term Ag’p is similar to that obtained by Horvath and Shao (1999) in their test for
a break only in d using a LR test from Whittle estimation. Likewise Ag is similar to the limit term derived
by Iacone et al. (2013) for a break only in y in the first-differenced version of their model, designed to test
for a break in the linear trend of a I(d) process under any memory using Abadir et al.’s (2007) Extended
Local Whittle estimation. Thus, our result generalizes theirs by allowing for joint breaks in both d and p,

plus in the short-run dynamics.
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contrast, if there were either only breaks in x or in both (d, @’) and p, then local power would be

maximized for some \g < 0.5 (resp. Ag > 0.5) if dy > 0 (resp. dy < 0).

Theorem 1 also nests the special cases where one exclusively tests for a break in dynamics or
in the level, i.e. only in d and a (so that Ag drops) or only in 4 (so that A?i,p drops), reflecting
that these two tests are asymptotically independent under local alternatives. However, note that if
only a subset of the parameters breaks, a testing procedure which does not allow for a break in the
other parameters could lead to better power properties in finite samples. Nonetheless, estimation
of the model under this null could yield misleading conclusions when the tested parameter happens
to be stable while the other parameters are the ones that actually shift. We analyze this last issue
in Subsection 5.2.1 below, where a robustified version of the test to the behaviour of the non-tested

parameters in the DGP is provided.

Lastly, Corollary 1 below provides the asymptotic distribution of themT test when the break

fraction A is assumed to be known.

Corollary 1 With known break fraction Ao, under Assumptions 1, 2 and 3, and hypothesis Hyp (Xo)
e d
LMT ()‘0) - X%—i—p (C ()‘0)) 5

with non-centrality parameter

2 L (do; Mo, Mo) — L? (do; 0, Ao)
o) = w2 (8,7) Ao (1 — Ag) + L =220 20 it
“O0) = O A =20 2™ 20 T2 (1 )

= Cda ()\0) +cu ()\0) ,
where w2 (6,7) = (6 ¥')E (S ¥

As expected, when )\ is known, the asymptotic distribution becomes a chi-square with 2 + p
degrees of freedom, where the non-centrality parameter ¢ (\g) depends on the two drifts under local
alternatives, namely cgq (Ao) and ¢, (Ag). Moreover, as in the case of unknown Xg, Corollary 1
nests the cases of testing for a break in a subset of the parameters: (i) if one tests for a break only
in (d, a), the limiting distribution becomes x3,,, (c4.a (A0)), where ¢, drops and (ii) if one tests for

a break only in p, the limiting distribution becomes x? (¢, (Ag)), where ¢4 drops.

The next corollary shows that the results in Theorem 1 and Corollary 1 on size and local power
under DGP (1) also hold under the DGP-MA discussed in Remark 3.

Corollary 2 The conclusions of Theorem 1 and Corollary 1 also hold for data generated under

the DGP-MA discussed in Remark 3.

Remark 10. As mentioned earlier, Martins and Rodriguez (2014) and Hassler and Meller (2014)

have proposed similar LM test statistics for a break in d in I(d) processes, but under the assumption
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of a known memory parameter (do) in the first subsample. In such an instance, the variance of the
test statistic would be smaller than when dy is unknown, resulting in a higher local power. Yet,
since the assumption of known dy is quite restrictive in practice, they suggest some estimators of
the memory parameter. Martins and Rodriguez (2014) plug in a parametric estimator of d to derive
the asymptotic distribution of the corresponding LM test statistic. However, their approximation
may not be accurate enough since it ignores the covariance between the test statistic and the
estimator under the null. Hassler and Meller (2014) plug in a semiparametric estimator for dy but
without deriving the limiting distribution of their LM test which they note could differ from the
corresponding distribution under known dy, due to the lower rate of convergence of their proposed

estimator.

5.2 Consistency of LM tests

In this section we prove the consistency of the LM test for breaks in either all or a subset of the
parameters. In particular, as regards the LM 7 test for the null Hy : (00, Bos Vo) = 0, we consider

the following set of fixed alternative hypotheses:

H (X)) : (00,8)) # 0 and v =0,
H{L (M) : (90,,@6), =0 and vy # 0,
HE (Ng) (B0, 8)) # 0 and v # 0.

where the superscripts in H f *(Xo), HY (N\o) and H f @ ()\g) denote, respectively, alternatives with:
(i) only a break in (d, ), (ii) only a break in p, and (iii) joint breaks in (d, ) and p.'” Under the

corresponding alternative hypotheses, the following result holds:

Proposition 1 Under Assumptions 1, 2 and 3, then:

The LM test statistic for a break in all parameters, LMy (Xo) and supy LMy (X), diverge: (i) at
rate T under either H{l’a’” (Xo) or Hfl’a (No), and (ii) at rate T*=2% (resp. T) under H{' (A\o) with
do >0 (resp. dy <0).

Remark 11. As anticipated above, it is important to highlight that the use of individual ﬁW/T
tests for breaks in a subset of the parameters — either (d, a) or y— may lead to spurious rejections
when the non-tested subset happens to be the only one shifting. The next subsection is devoted

to analyze this issue in further detail.

As in Corollary 2, the next corollary shows that the results in Proposition 1 on consistency
under DGP (1) can be extended to DGP-MA.

1"To save space we do not consider here alternatives involving breaks only in d or « or joint breaks in

(1, o), whose testing strategy would be similar to the one used for the three cases discussed in this section.
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Corollary 3 The conclusions of Proposition 1 also hold for data generated under the DGP-MA

discussed in Remark 3.

5.2.1 Robustified LM test

Whenever the joint LM T test rejects the null of parameter stability, one may be interested in
identifying the specific source of the break under any of the aforementioned set of fixed alternatives.
To pursue this approach we propose a robustified version of the LM test against potential breaks

in the non-tested parameters, first under known break fraction, and next when it is unknown.

(a) Known break fraction

For ease of exposition, besides assuming known Ay, we consider the simple case where there
are no short-run dynamics: ap(L) = 1, and B, = 0. To achieve break-source identification in this

case, it is convenient to derive individual LM tests under the following two simple null hypotheses,

where, unlike the individual nulls considered earlier, no assumption is explicitly made about the
stability of the other (non-tested) parameter. Then, a sequential procedure can be designed to test
the above simple null hypotheses. The first step consists of testing for joint breaks in d and u by
means of the LM 7 test defined in (3). In case of rejection, the second stage entails testing the
individual null Hg (Ao) (resp. HY (Ao)) to check if d (resp. ) is actually breaking, irrespective of
whether the other parameter shifts or not.!® For example, to implement a robustified test of the
null HJ (\) against the alternative H{ (o) : 0y # 0, rather than using the LMy test based on the
score in the direction of § with Ho-restricted estimates (dor, figr) as in (6), we recommend to use

the following Hg(\g)-restricted estimates

T
— 2
(dor. o o) = ars min 3~ (Af (4 —p—vE (M) (15)
Y

where different levels are allowed in each subsample. Then, the robust individual version of the
LM test for Hé (\g), labeled TM-(\), is given by

aLT (Qﬁ; )‘0)

LM (%) = =150

’

-1
) AL (1, Ao)
w:{% Q/JZ&T

o

_ 82‘CT (wa )‘0)
¢:771T 3¢3¢'

where ¢ = (0,707, dor, figr, 7%) and 62 = T} Zthl g2 uses the H(\o)-restricted residuals

& =& (Urp) = AT (3 — figr — Dor Rt (Ao)). Using a similar reasoning, we can define LM/ (o)

18Notice that, to robustify these individual tests against misleading inference, it is preferable to remain

agnostic about the behaviour of the non-nested parameter.
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to test HS‘ based on the corresponding H{f (Ao)-restricted estimation, where this time Yy =
(Bor, 0, dor, igr, 7%)', as well as to derive robustified LM tests when allowing for short-run dy-

namics captured by an AR(p) process with lag polynomial a (L) .

The following Proposition establishes the asymptotic behaviour of the robustified LM tests

considered above.
Proposition 2 Under Assumptions 1, 2 and 3:

(a) The robustified test statistic LMCle()\o) for a break only in the memory, diverges at rate T
under either Hf’” (M) or H{(Xo). By contrast, it converges to a x5 distribution under
HY (X\o), i.e, when only p shifts.

(b) The robustified test statistic LM7y(\g) for a break only in the level, diverges: (i) at rate
T1=2d0 (resp. T) for 0 < d < 0.5 (resp. —0.5 < d < 0) under HI' (\o); (ii) at rate T'1—2%
(resp. T') for 0 < dy < 0.5 (resp. —0.5 < dy <0) and Hf’“ (Xo). By contrast, it converges to
a X3 distribution under H{ (\o), i.e. when only d shifts.

Upon rejection of the joint null of parameter stability in the first stage of the sequential testing
procedure, Proposition 2 illustrates why the robust individual tests WdT()\o) and LM'-(\) in the
second stage help identify which specific parameter (or parameters) actually break. The insight
is that the individual test of HY (\o) (resp. H{ (Mo)) will reject asymptotically this null under
H&(X\o) (resp. HY' (X)) but will only exhibit trivial power under H{' (Xg) (vesp. H{ (No)). It
also follows from Propositions 1 and 2 that the rates of divergence of LM ch:u and LM’.(\g) under
HY (M\o) depend on the value of the memory parameter in the second subsample (i.e. dp if memory

is constant, or d; if it breaks).

Remark 12. A brief discussion follows on how size is controlled asymptotically in the previous
sequential testing approach. As is well known, Type-I errors for the joint hypothesis pile up in
multiple testing when tests of individual hypotheses are implemented after not rejecting the previ-
ous ones, therefore requiring Bonferroni-type corrections. However, we claim that such corrections
are unnecessary here because the W; test does control size. In effect, (under H}') d would be
wrongly identified as the source of the break in 100a% cases as T — oo, whereas, since the first
stage is asymptotically correct, rejection would also happen asymptotically at most in 100a% cases
under Hy (that is, when none of the alternatives HY', H dor H f # hold). Thus, the probability of
wrongly concluding that d is breaking is controlled in both cases (i.e. under Hf' and under Hy)

while, if d truly breaks (under H f or Hf #), this would be confirmed with probability tending to 1.

(b) Unknown break date
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When Ag is unknown, its value is replaced in the test by the estimate of the break date obtained
from the first step, namely, Ar = arg maxye LMy (A\). The next two propositions (which, to our
knowledge, seem to be new in the literature on break testing), justify this procedure. In particular,
we use a weak convergence condition to ensure that the restricted parameter estimates converge to
an interior value of the parameter space under a fixed alternative (Proposition 3 below) and under
local alternatives (Proposition 4 below). This implies that the break date can be fully pinned down
asymptotically by maximizing the LM 7 (A) test statistic, so that A\g becomes identifiable from the

restricted estimates.

Proposition 3 Under Assumptions 1, 2, 8 and ((i, &',[L) —p (da, 0y, puy), where (da,y) €
Int (D x A), H™ (Xo), H" (\o) or H®™" (Xo), Ao € A, then Ap 2 Xo.

Proposition 4 Under Assumptions 1, 2, 3 and the local alternatives
H]C.i:%:’rlfl <)\0) : (907 667 VO) =mrT (6/T1/2, ’yl/Tl/27 n/Tl/z_dO)

where A\g € A, (0,7',m) # 0 and mp satisfies as T — oo

1+mT

mr e 0

then S\T £> )\0.

As a result of these two propositions, the conclusions of Proposition 2 also hold for the sup-

version of the LM test.!'? In fact, as will be later discussed in Section 7 below, our simulation

results confirm the rather satisfactory finite sample performance of the break fraction estimators

A = argmaxyen LM 7 (A\) and Ap = arg maxyep mgp (N).

6 Asymptotic properties of LMW-type tests

Using estimates (dor, éor, fior) in place of (do, o, 11g), we next show that the limiting distribution
of LMW-type test is equivalent to the one of the LM test under a sequence of local alternatives.
Recall from Remark 6 that the insight for this equivalence result is that the filter used by the
LMW-type test, (1 — A?)/0, converges to the filter used by the LM test, —log As, when § — 0
under local alternatives. Yet, as will be shown below, the two filters could be different when 8 does

not converge to zero, namely, under fixed alternatives.

19Note further that Proposition 3 complements the results of Rachinger’s (2017) on consistent estimation
of the break fraction )¢ obtained by minimization of the conditional sum of squares (CSS). Indeed, both

approaches provide asymptotically the same information on Ag when the model is known.
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Theorem 2 Under Assumptions 1, 2 and 8 and under the local hypothesis Hir, for unknown

parameters do, oy and jiy and for

—_~—

(a) an unknown break fraction X\, the asymptotic behaviour of the LM W-type test supy LMW (X)
corresponds to the one derived for the sup, E]TJT(A) test in Theorem 1.

(b) a known break fraction Ao, the asymptotic behaviour of the LM W-type test m;r (Xo) corre-
sponds to the one derived for the mT()\()) test in Corollary 1.

In addition, we discuss the consistency of the LMW-type test for breaks in the dynamics and/or

 under fixed alternatives, where the following result holds.

d7a»ll - d7a7N

Proposition 5 The LMW-type tests for a break in all parameters, M/T (M) andsupy LMW~ (N),
behave like the mT tests for joint breaks in Proposition 1.

A robustified version of the LMW test can be obtained in a similar fashion as for the LM test
by regressing the restricted residuals & = & (¢¥7) = Af‘” (yt — for — Por R (A)) on Xt(p) N\ =
Xt(p) (A,éT()\),ﬁT (N ,JOT,[LOT,DOT), where (dor, figr, Vor) are the restricted estimates in (15)
with \ evaluated at S\T.

Thus, under fixed alternatives, Proposition 5 implies that,the regression-based versions of the
two tests exhibit the same rates of divergence. However, as anticipated above, their drift terms
will be different, a feature which affects their relative asymptotic power. Our main finding in this
respect is that the drift term of the LMW-type test is larger than the corresponding drift term
of the LM test. To illustrate this result, let us consider the alternative of only a break in d at a

known fraction A\, with ap(L) =1 and By = 0. Then, it follows that

_ LM () 1—)
plim () = \ OCLM (d1,da);
T—o0o 0
LMW (\) 1- Ao
lim =27\
p Jim T " Cruw (di,da),

where the drift terms (Cpys and Cpysw) in the previous expressions are given by

. 2
X & rG—ktdi—da) \ T(j+di—da
(z (z s >> el

j=1 \ k=1

Cry (d1,da) = : R
a'Z.LM ad J T(j—k+di—da)
> <k§:31 AOGRTD)

F'(142(da—dy))

Cruw (d,da) = T2 (1+ (da — dv)) .

such that d4 and 6’3 s are the probability limits of the restricted estimate C?OT (obtained from

(6)) and the estimated variance in the LM test, respectively, under the alternative H{(\o). For
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the specific simplified case considered here, they can be shown to be equal to,

(1 —2(do —d)) I'(1—-2(d —d))
T2 (d—do + 1 F2(d—d11+1) } (16)

dy = arg mm {)\0 + (1= Xo)

+ (1= o)

)
I'(1+2(da - do)) ['(1+2(da—dy))
; d,LM — =0} o Ao 2 _ 5 _
I'2(1+ (da — do)) 2 (14 (da —dy))

As illustrated in Figure 1, where A\g = 0.5, dg = 0, and o9 = 1, it easy to show that the drift
terms above satisfy the following inequality: Cprarw (di,da) > Crar (di,d4), with this difference
becoming steeper when d; < dy < 0 (see Dolado et al, 2017). Therefore, under H{l()\g), the
LMW-type tests tend to dominate the LM tests in terms of asymptotic power due to their greater

non-centrality parameters.

[Figure 1 about here]

6.1 Model specification for LMW-type test

To determine the value of p in practice, we need to ensure that the proposed model and the
regression underlying the LMW-type test (11) are correctly specified. The key assumption to
check is that the residuals are approximately i.i.d., as specified in Assumption 2. However, our
method for testing residual serial correlation should account for the special features of this artificial
regression, namely, that both the dependent variable and the regressors are generated variables,

and that they depend on A7

To address the parameter-estimation effect both in the definition of &; and Xt(p ) (S\T) and the
computation of the residuals é = & (5\T> =z — 0'X, (XT), we propose to apply a Breusch-
Godfrey (BG) test for the null of no serial autocorrelation in the residuals against the alternative
of autocorrelation of order P (see Breusch (1979) and Godfrey (1978)). In our setup, the BG
test consists of an OLS regression of the residuals é; on its first P lags, the regressors th(p ) (S\T)
and the residual derivatives with respect to the set of estimated parameters (JOT,dOT, /]OT) in

the dependent variable &, i.e., Zt(p ) (0), which are similar to f(t(p ) (5\T> but without restricting the

estimation to the second part of the sample. Hence, the testing dynamic residual regression
- 5 5 rx® (3 AN
€ = Mg +1M1€—1+ -+ Npe—p +NX; )+ 0527 (0) + errory,

is fitted and the LM test statistic TR% for the significance of the coefficients of é;_1,...,é;_p, Hy :
Ny =---=mnp =0, is compared to a X% critical value. Here P should be chosen to be larger than p
to be able to identify dynamics not properly described by the specified model. With and without

breaks in the model, th(p ) (S\T) should not be significant in the residual regression, so dependence
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on Ay would not affect asymptotic inference. Despite the fact that lag length order selection could
impact the properties of the test under some data configuration, as will be shown in our Monte
Carlo simulations below, this simple procedure seems to provide good size accuracy under the null

of no breaks and good power when breaks occur in some of the parameters.

6.2 Multiple breaks

An additional advantage of the LMW-type test is that it can be easily extended to allow for the
presence of multiple regimes, therefore allowing for breaks in d, & and p at different periods of time.
In this fashion, our maintained assumption that breaks are coincidental in time can be relaxed.
We briefly sketch in the sequel how to implement the tests in this more general setup where, for

notational simplicity, we consider again the case of no short-run dynamics with o (L) = 1.

Denoting the number of regimes by m, let us consider the following DGP for ¢ =0,...,m — 1,
AP (yr — ) = e t = NT]+ 1, P T,
with

m—1
=Y RV ()
1=0

where BVTY (A) = R (A, M) = LNT] < £ < [Nt T, Ao =0, Am =1, A= (A1, o, A1)’
and d; is defined similarly. For example, when testing for 0 versus 2 breaks (so that m = 3),

implementation of the LMW-type test relies on the following regression model,

1- A%
AP (g — o) = (m Qﬁ

1— AP
(o [5

where a test of Hy : ¥4 = 9o = ¥3 = 94 = 0 corresponds to testing for two breaks in both

AL (g, — 1) + ﬁzAfﬂ) R (N

A?O (yt - ,Mo) + 194Aglo 1) Rgg) ()\) + Et,

parameters, while testing H{) : ¥1 = ¥3 = 0 (resp. ¥2 = ¥4 = 0) is equivalent to testing for two
breaks only in d (resp. ). As for the non-coincidental breaks, e.g. testing H|, : 91 = 94 = 0 would

correspond to testing for a break in d, followed by a break in u.

Finally, the LMW-type test defined in (9) can also be extended to a sequential testing of
multiple breaks, e.g. by testing the null of k£ breaks (denoted Hék), with £ = 0,1,..) against the
alternative of k£ + 1 breaks (denoted H fkﬂ) ), as we carry out in the empirical application reported
in Section 7. In this case, unlike before, we do recommend the use of Bonferroni conservative
critical values because multiple tests are performed in many subsamples to test for a further break.

(

In particular, if the null Héo) is rejected in favour of H 11), the sequential testing procedure implies
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that the same test would be applied again in each of the two different subsamples to identify further
breaks, but this time using «/2 nominal critical values to keep the size of the overall test of Hél)

vs. H1(2) at the right level a.

Remark 13. To test the origin of breaks in the potentially non-coincidental case, one could apply
the robustified tests discussed in Section 5 at the second stage once the aforementioned sequential

procedure has determined the number of breaks.

7 Finite sample simulations

In this section we report some Monte-Carlo simulation results regarding size and power of the
regression-based LM and LMW-type tests in finite samples. In some simulations the break fraction
will be assumed to be known while in others it will be taken to be unknown. We consider a wide

range of setups, which are organized in different simulation blocks as follows.
(I) Size and power of the LM and LMW-type tests (no short-run dynamics)

In the first set of simulations we abstract from short-run dynamics (i.e. ap(L) = 1 and
By = 0) and consider only shifts in d and/or p at an unknown break fraction A € A = [e,1 —
€] of the sample, with ¢ = 0.15. The chosen significance level is 0.05 and the sample sizes
are T € {200,500,1000} regarding size, and T" = 200 regarding power. We set an error vari-
ance 0(2) = 1 and take draws from a N (0,1) distribution. To compute size, we consider dy €
{-0.4,-0.3,-0.2,—-0.1,0,0.1,0.2,0.3,0.4} and py = 0 while, to compute power, we consider
Ao = 0.5, dy € {-0.2,0,0.2}, d; € {-04,-0.2,0,0.2,0.4}, pg = 0 and p; € {0,0.25,0.5}. The

number of simulations is 10, 000.

Table 2 (panels a and b) displays the size of the two tests for joint breaks in d and p at an
unknown break fraction. The main finding is that both tests exhibit satisfactory size properties
for "= 500 and 1000, though they can be slightly oversized for 7" = 200. Table 2 (panels ¢ and d)
displays the power results of the two tests for a break in d and/or pu at A9 = 0.5. The simulation
results confirm that there are some power gains from using the mf T tests in finite samples.?’
As can be inspected, power for both tests is increasing in the magnitude of the shifts in d and p.
For example, looking at the second block in panel (d), for py = pq = 0, a shift in d from 0 to 0.2
increases the power of the L/W/T test by 11.6 pp. (= 18.2 —6.6) whereas, for dy = d; = 0, a shift
in p from 0 to 0.25 raises power by 22.7 pp. (= 29.3 — 6.6). The corresponding gains in power

when d shifts from 0 to 0.4 (for g = p; = 0) and when g shifts from 0 to 0.5 (for dg = d; = 0) are

20We have checked whether the higher power of the LMW -type tests relative to the LM test could be
due to the differences in their effective sizes but size-corrected power of the former test remains higher,

though to a slightly lesser extent than when the nominal size is used.
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49.6 pp. and 63.0 pp., respectively. Lastly, as expected, the power arising from breaks in p is the
lower the larger d. For instance, using the shift in g from 0 to 0.25 (this time with dy = d; = 0.2,
instead of dy = d; = 0), only raises the power of the LMW test by 9.9 pp. (= 16.0 — 6.1).

[Table 2 about here]

(IT) Estimates of the break fraction (no short-run dynamics)

With regard to the estimation of the break fraction when it is considered to be unknown,
Figure 2 shows a second set of simulations about the finite sample performance of the break-fraction
estimators Ay = argmaxyep LM 1 (A) and Ay = arg maxyea M/T (A) discussed in Proposition
3 and 4. Their values have been simulated for breaks in d (from 0 to 0.4) and in p (from 0 to 0.5)
at A\g = 0.5, with 7" € {200,500}. As can be inspected, the distributions of these break-fraction
estimates are well centered around their true value in all these simulations, and their variance

decreases as the sample size increases.?!

[Figure 2 about here]

(IITI) Size and power of the LM and LMW-type tests (known AR(1) short-run

dynamics)

Next, we report a third set of size and power simulation results in Table 3, now allowing for
known short-run dynamics captured by an AR(1) process, with all parameters potentially shifting
at a known fraction \g = 0.5. As regards size, we consider 7" € {200,500, 1000} and uy = 0,
dp € {—0.4,-0.2,0,0.2,0.4}, and a9 € {—0.5,0.5} while for power we choose, T = 200, dy €
{-0.2,0,0.2} and d; € {—0.4,—-0.2,0,0.2,0.4}, p; € {0,0.5} and a; € {ag — 0.3, ap, a9 + 0.3}.
Finite sample size (panels a and b) is relatively well controlled for both tests, converging to 5
percent as the sample size increases. As regards power (panels ¢ and d), the advantage of using the
m T test, instead of the LM 7 test, becomes much more substantial than in the previous sets

of simulations, reaching a 40.4 pp. (= 94.6 — 54.2) power gain under joint shifts in d (from 0.2 to
0.4), & (from 0 to 0.5), and « (from 0.5 to 0.8). As pointed out in Remark 6, the insight is that,

unlike the LM T test, the LMW test is able to yield i.i.d. residuals in its underlying regression
when substantial breaks in the short-run dynamics are present (i.e. under fixed alternatives), and
thus its use should be strongly recommended in those cases. In addition, panel (e), illustrates that

the LMW 7 test also has power against breaks under the alternative DGP-MA.??> Thus, the choice

of DGP (1) does not seem to play a crucial role in the obtained results.

2l Unreported simulations show a comparable performance of the break fraction estimator for the alter-
native DGP-MA.
22Unreported simulations confirm these findings for the LM 7 test as well.
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[Table 3 about here]

(IV) Size and power of the LMW-type test (unknown AR(p) short-run dynamics)

In Table 4 we provide a fourth set of simulations similar to those presented in Block (III), but
this time considering an unknown lag order p of the autoregressive short-run dynamics. Due to
its higher power, results are only reported for the m 7 test here and in the next two sets of
simulations. As discussed in Section 6.1, in this case the BG testing procedure is implemented
to check for lack of autocorrelation in the residuals estimated under the alternative. Thus, the
lag order p of the ARFI(p,d) process should be augmented until the null of i.i.d. residuals is not
rejected. The parameter configuration for this simulation exercise corresponds to those in Table 3.
The true lag order is set to p = 1, and we allow for an ARFI(p, d) structure with p < 3, such that
P =5 lags of the residuals are considered in the BG testing procedure. Besides the size (panel a)
and power (panel c¢) properties of the chosen test, we also report the proportion of the simulations

in which the BG testing procedure selects the true value of p (panel b). As can be observed, while

size and power are comparable to those reported for the LMW r test in the simulations above, the
proposed BG testing procedure correctly selects the true value of p in most instances, especially
when 7' = 500 and 1000.%

[Table 4 about here]

Related to the previous set of simulations, we next consider breaks in the dynamics and levels for
an ARFI(3,d) process with known p. The autoregressive coefficients in the AR(3) lag polynomial
(1 —ap L — ageL? — a03L3) are taken to be ap; € {—0.5,0.5}, ag2 = 0.5a01 and ap3 = 0.25c01 .
As for power, we consider two alternative breaks in the AR parameter g, which takes values
a1y € {—0.5,—0.2} in the first case, and aq1 € {0.2,0.5} in the second case. In both instances, the
remaining parameters of the AR(3) process are set such that a2 = 0.5a11 and a3 = 0.25a11. The
results of this simulation, reported in Table 5, support the previous findings about the fairly good

size control and the satisfactory power of the LMW T test.
[Table 5 about here]

(V) Size and power of the LMW-type test (ARMA short-run dynamics)

Whereas the simulation results in Block (IV) have shown that the proposed BG testing proce-
dure can deal with ARFI(p, d) of any finite order p, it is interesting to check whether this procedure

23 Notice, however, that the lag length selection could impact the properties of the test under some data

configurations, e.g. when the errors have an MA root close to 1 (Ng and Perron, (2001)).
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behaves properly when the short run dynamics follow an ARMA(p, q) process instead of an AR(p)
process. Our conjecture is that the BG procedure should choose a sufficiently long autoregressive
lag order in this case to render approximately uncorrelated residuals. To evaluate the performance
of the m 7 test in such a case, the following ARFIMA(1,d, 1) process is considered as the DGP

of this simulation exercise
(1_O‘tL)Agt(yt_,Ut):(1_§0L)5t7 t:1727"'7

with &, = 0.2 and ag € {0.3,0.5,0.8} for size, and g = 0.5 and a7 € {0.2,0.5,0.8} for power.?*
The results of this fifth set of simulations of the LMW test of joint breaks in d, y, and « are

displayed in Table 6. As can be inspected, the size and power properties of the LMW test
are very close to those presented in Table 3 above, implying that the BG testing procedure fares
well in correcting for this type of autocorrelation by selecting a sufficiently long order p in the

implementation of the test.

[Table 6 about here]

(VI) Size and power of the LM and LM W-type tests with heavy-tailed innovations

In all the previous simulations, innovations have been assumed to be Gaussian. Yet, given that
the distribution of financial data is often heavy tailed, we report next a sixth set of size and power
simulations with the same DGP used in Table 3 above for both tests, but this time with innovations
being drawn from a t(6) distribution, rather than from a N(0,1). Comparing the results in Table 7
with the previous results, we conclude that the size and power properties of both tests remain

similar under this much heavier-tailed distribution of innovations.
[Table 7 about here]

(VII) Size and power of the LMW-type tests with multiple breaks

We finally report here some simulation results of the proposed sequential testing procedure for
multiple breaks based on mf 7. In particular, we assume breaks at \g = 1/3 and \; = 2/3,
splitting the series into three regimes. The sample sizes are T' = 200,500. For simplicity, we
abstract from short-run dynamics and only consider breaks in d and p. The setup is thus the same
as in Table 2, but with two breaks instead of a single break. Since we first test for 0 vs 1 breaks in
the sequential procedure, the size of the test is the one reported in Table 2. Thus, Table 8 reports

power. In particular, we compute the proportion of times that the test locates 0, 1, 2 (the correct

number of breaks) and 3 breaks. In addition, whenever 2 breaks are detected, we report the mean

24 Results for £, = —0.2 are provided in the online appendix. They are fairly similar.
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and variance of the estimated break fractions. Three different break scenarios are considered: (a)
breaks in d from 0 to 0.4 and then back to 0, plus in u from 0 to 0.5 and then back to 0; (b) breaks
in d from —0.4 to 0 and then up to 0.4, and in x from 0 to 0.5 and then up to 1; and (c) breaks in
d from 0 to 0.2 and then down to —0.2, plus the same breaks in x as in (b). The main takeaways
from Table 8 are that: (i) as expected, acceptable power performance requires sizeable breaks as
well as large sample sizes (T' = 500), in line with the consistency of the sequential procedure; and
(ii) the consistency of the break fraction estimates holds in all cases, as reflected by the means

becoming closer to 1/3 and 2/3 with decreasing standard deviations.

[Table 8 about here]

8 Empirical application

In this section we apply the proposed testing methodology to the analysis of the forward discount in
exchange rate markets. As is well known, rational expectations and risk neutrality, combined with
covered and uncovered interest rate parity, lead to the so-called forward exchange rate unbiasedness
hypothesis (FRUH) whereby the (logged) forward rate, f;, is an unbiased predictor of the future
(logged) spot exchange rate, s;i1, i.e. F¢(si+1) = fi. In particular, testing FRUH corresponds to

a test of the null Hy : g = 0, 41 = 1 in the following regression model
Aspy1 = do + 01 (fr — st) + €t41,

where (f; — s;) is the forward discount. This null has often been rejected in empirical applications
where typically the OLS point estimate of §; is small or even negative (see, e.g., Engel, 1996, for an
overview of this literature), leading to what has been coined the forward discount anomaly. It has
been argued that this finding may result from the unbalanced nature of the previous regression.
In effect, while the dependent variable As;;1 is conventionally found to be I(0), there is a large
body of literature documenting that (f; — s;) follows a I(d) process with d generally lying in the
non-stationary range, 0.5 < d < 1 (see, e.g., Baillie and Bollerslev (1994), and Maynard and
Phillips, (2001)). However, Choi and Zivot (2007) have shown that estimates of d are likely to
be upward biased when structural instabilities in the level of (f; — s¢) are ignored. Using the
residuals of the forward discount monthly series for five G7 countries, Choi and Zivot (2007) first
adjust the level of these series for several structural breaks detected by means of Bai and Perron’s
(1998) methodology. Next, they estimate d non-parametrically (using Kim and Phillips’s (2000)
log-periodogram regression approach) from these break-adjusted series. Their evidence points out
that (f: — s¢) is subject to several breaks and that accounting for these breaks leads to much lower

estimates of d than those previously found in the literature, with 0 < d < 0.5.
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Following this controversy, we provide here a brief empirical application of our proposed tests
using the forward discount data for five G7 countries examined by Choi and Zivot (2007). Their
dataset includes monthly forward discount rates for the period 1976:1-1996:1 corresponding to the
exchange rates in terms of US dollars for Canada, Germany, France, Italy, and U.K., where f; is

defined as the (logged) 30-day forward rate.

Figure 3 displays the five time series at hand. Choi and Zivot (2007) find five breaks in the
level of (f; — s¢) for Germany and U.K., four breaks for France and Italy, and three breaks for
Canada. The dates of all these breaks are displayed using dashed vertical lines in Figure 3. As
can be seen, about half of them take place before 1981, while most of the remaining ones occur

between the late 1980s and early 1990s.

[Figure 3 about here]

However, Choi and Zivot (2007) also report that reversing the testing procedure (i.e., first d
is estimated from the time series of (f; — s;) without allowing for level shifts, and then Bai and
Perron’s (1998) procedure is used to detect multiple breaks in the filtered series AZ(f; — s;)), leads
to a much smaller number of breaks (none for Germany and France, one for Italy, and three for
Canada and U.K.). These contrasting findings possibly reflect the shortcomings of using a two-step
testing procedure instead of a single-stage approach, as the one proposed here. Moreover, given
that the level and the dynamics could shift simultaneously (an event which is not considered by
these authors), both sources of breaks could easily get confused. Our single-step testing approach
is therefore better suited to address this problem since it yields more reliable estimates both of
the number of breaks and their origin. Note that, despite the fact that financial series at daily
frequencies exhibit pronounced volatility clustering, there are little ARCH effects in the monthly
forward discount rates and persistence in such series is well captured by an I(d) process (see e.g.
Baillie and Bollerslev (1989)), making our testing procedures suitable for their analysis. At any
rate, since our tests require i.i.d. innovations, we correct for any potential heteroskedasticity left
by standardizing the variance of the residuals in the regressions performed in each of the different
regimes.

To check this possibility of breaks in levels and dynamics, we consider an ARFI(p, d) model with
drift and an AR process of unknown order p for each of the five series, allowing for simultaneous

breaks in all three parameters (d, a, ). Given its better power performance, we apply our sup-

LMW test statistic, where the lag order p is selected according to the proposed BG testing
procedure. To allow for multiple breaks (see the discussion in Subsection 6.2), we test sequentially
(0 vs. 1 break and, upon rejection, 1 vs. 2, and so forth) and use the critical values reported in

Table 1 to determine the number of breaks together with the break fractions. Table 9 (panel a) and
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Figure 3 display the break dates as the vertical solid lines. In addition, horizontal solid lines depict

the estimated value of d in each of the relevant subsamples where breaks have been identified.

[Table 9 about here]

At the 5 % level, the sup—m T test detects only one statistically significant break for Canada
and Germany, two for France and Italy and three for the U.K., although there is some evidence
in favour of a second break for both Canada and Germany when using a 10% significance level.
Thus, the number of breaks found with our single-step testing procedure (9 to 11) is in between
the two contrasting numbers (21 and 7) reported by Choi and Zivot (2007) in their original and
reversed two-stage testing approach. As for the lag orders in the AR(p) process, the BG testing
procedure selects p = 1 for Germany and Italy, p = 2 for U.K., and p = 3 for Canada and France.
When using the Bonferroni correction in the sequential procedure, as suggested in Subsection 6.2,

all the previous breaks remain statistically significant but this time only at the 10% level.

In general, the breaking dates estimates gather around the second half of the 1980s and early
1990s, the latter possibly as a result of the collapse of the ERM in 1992. Our results agree with
Choi and Zivot’s (2007) in that we find a break in the early and late 1980s for U.K. and in the
early 1990s for Canada, Germany, and the U.K. However, with the exception of the U.K. in 1981,
their earlier breaks turn out to be statistically insignificant according to our single-step testing

procedure.

In order to provide further comparisons with Choi and Zivot (2007)’ findings, we also apply the
robustified LMW test discussed in Subsection 5.2 to identify which specific parameters shift at
each of the previously identified break points (see Remark 12 above for a justification of why this
sequential approach does not involve a multiple testing size problem). Table 9 (panel b) presents
the results obtained from applying this test to detect breaks in the dynamics as a whole (d, «)
and in the level u. As can be inspected, in line with these authors, we find that all detected
breaks involve shifts in the levels for the specific break dates identified here. However, a majority
of them (the exception are the only break in Germany and the first break in the U.K.) also involve
parameter shifts in either the short-run dynamics or in the long memory parameter. For example,
a comparison of the estimates of d reported in Figure 3 with the test outcomes in Table 9 (panel
b) shows that, on top of p, both d and a shift after the 1987(12) break in Italy, whereas d remains
stable but « shifts after the second break in 1994(2). Moreover, unlike these authors, we find
instances (e.g. France and the second break in the U.K.) where d increases, even after allowing
for breaks in & and p. Therefore, it look like many of the breaks interpreted by Choi and Zivot
(2007) as being exclusively due to shifts in the level of forward discount rates also involve shifts in
the memory and short-run dynamics, and that these novel findings can only be uncovered by our

proposed testing approach involving joint parameter breaks.
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9 Conclusions

Our motivation for this paper is that the joint modeling of breaks in the (memory and short-run)
dynamics and the level of fractionally integrated stochastic processes is a relevant issue to analyze
on which research has been limited so far. By considering breaks in all parameters simultaneously,
potential confounding problems about the sources of shifts in the persistence of a time-series process
can be avoided. Our contribution here is to extend the well-known LM test for breaks only in the
memory parameter of an I(d) process to further account for breaks in the level as well as in the
short-run dynamics. As a by-product of our analysis, we derive: (i) a novel regression-based LM
test cum Wald interpretation, labeled LMW-type test, for ARFI(d, p) processes with drift that also
accounts for all these shifts; (ii) individual tests for the stability of a given parameter which are
robust to the behaviour of the non-tested parameters, and (iii) consistent estimates of the break

dates.

The proposed tests share several nice features. While LM tests are computationally attractive
by only requiring estimation under the null, LMW-type tests can exploit further information about
the alternative, potentially leading to higher power without increasing computational complexity.
In addition, in contrast to LM tests, LMW-type tests allow for a consistent specification of the
short-run dynamics, as long as these are restricted to AR(p) processes, although in simulations we
show that they can also accommodate some ARMA processes and innovations with heavy-tailed
distributions. Our Monte-Carlo simulations, based on analytical results, show in particular that
LMW-type tests for joint breaks can yield substantial power gains relative to LM tests in several
instances and are robust to different specifications of the DGP. Finally, our empirical application
on potential breaks in forward discount rates for several G7 countries provides new findings on
the origin of these breaks (in both components of the dynamics, as well as in levels), which have
been subject to considerable attention in the literature but without considering shifts in all those

parameters at the same time.
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Table 1: Critical Values of LM tests for breaks in (d, )

unknown break fraction \.
a) Critical Values of LM tests for breaks in (d, u), p = 0.

or in (d,a,p) for an

e\ dO -049 -04 -03 -02 -0.1 0 0.1 0.2 0.3 04 049
0.1 11.3 115 115 116 119 123 129 140 159 184 20.6
0.15 109 109 11.0 112 114 11.8 124 13.5 154 18.0 20.2
0.2 10.5 10.5 10.6 10.7 11.0 11.3 120 13.1 149 175 198
b) Critical Values of LM tests for breaks in (d, ax, i), p = 1.
e\d, -049 -04 -03 -02 -01 0 01 02 03 04 049
0.1 142 142 142 143 145 147 152 16.2 178 20.2 224
0.15 13.6 13.6 13.7 13.8 14.0 142 14.7 156 173 19.7 219
0.2 13.1 132 132 133 135 13.7 142 152 16.8 19.2 21.5
c) Critical Values of LM tests for breaks in (d, a, i), p = 2.
e\ d, -049 -04 -03 -02 -01 0 01 02 03 04 049
0.1 16.5 16.5 16.6 16.7 16.7 16.9 174 181 19.7 219 24.1
0.15 159 16.0 16.0 16.1 16.2 164 16.8 17.6 19.1 21.4 23.7
0.2 154 154 154 156 157 159 16.3 17.1 187 209 232
d) Critical Values of LM tests for breaks in (d, &, 1), p = 3.
€\ dO -049 -04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 049
0.1 18.6 18.7 17.7 188 188 189 194 200 21.5 23.6 25.7
0.15 180 181 18.1 18.1 183 184 188 194 20.8 23.1 25.3
0.2 175 175 176 177 177 179 182 189 203 226 249
e) Critical Values of LM-tests for breaks in (d, o, 1), p = 4.
€\ dO -049 -04 -03 -02 -0.1 0 0.1 0.2 0.3 04 049
0.1 20.6 206 20.7 207 208 209 21.3 21.9 232 252 274
0.15 19.8 20.0 20.0 20.1 20.2 20.3 20.6 21.3 226 24.8 26.9
0.2 19.5 195 195 196 19.6 198 20.1 20.7 221 242 26.5
f) Critical Values of LM-tests for breaks in (d, a, i), p = 5.
€\ dO -049 -04 -03 -02 -0.1 0 0.1 0.2 0.3 04 049
0.1 225 225 225 226 227 227 231 237 249 269 29.0
0.15 21.8 219 219 220 220 221 224 23.0 242 264 285
0.2 21.3 213 21.3 214 214 21.6 219 224 237 258 28.1

Note: Unknown break fraction A € [e,1 — €]. 5% Significance level.

Based on 10,000 grid points for the break fraction and 100,000 simulations.

36



Table 2: Simulated size and power of the LM and LMW-type tests for a joint
break in long memory and level (unknown break fraction)
a) LM test: Size
T \dO -04 -03 -02 -0.1 O 0.1 02 03 04

200 6.8 66 65 66 64 6.1 6.0 52 438
500 6.0 67 64 64 60 59 57 6.0 5.7
1000 56 65 62 58 54 52 51 56 49
b) mf—type test: Size
T \dO -04 -03 -02 -0.1 O 0.1 02 03 04

200 74 76 67 74 66 6.2 6.1 46 5.3

500 6.6 69 63 63 69 66 6.0 42 44

1000 58 6.6 6.8 6.2 6.0 56 5.0 47 4.2
¢) LM test: Power (T = 200)

do -0.2 0 0.2
joa \ dl -04 -02 0 0.2 -04 -02 0 0.2 0.4 -0.2 0 0.2 0.4
0 26.6 6.5 17.8 585 | 747 270 6.4 147 534|717 220 6.0 136
0.25 94.7 T71.3 50.8 67.5|894 575 242 252 559 |76.3 305 10.2 14.8
0.5 100 99.6 928 86.0 | 99.4 93.2 658 450 62.6 | 8.5 54.0 21.3 20.1

d) M/—type test: Power (T = 200)

do -0.2 0 0.2
o\ d, -04 -02 0 02 | -04 -0.2 0 02 04 | -02 0 02 04
0 299 6.7 21.1 639 |73 280 6.6 182 562|734 231 6.1 16.0
0.25 959 757 585 739|943 639 293 287 61.0]80.1 351 16.2 19.7
0.5 100 99.8 939 87.7]994 948 696 49.0 657|939 581 262 273

Note: Rejection probabilities of 5% test for joint break in d and p, € = 0.15, \g = 0.5, uy = 0, U% =1

Figures in bold characters correspond to simulated sizes.
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Table 3: Simulated size and power of the LM and LMW-type tests for a joint

and AR short-run dynamics of known order
b) LMW- type test: Size

break in long memory, level
a) LM test: Size

Qg -0.5 0.5 ag  -0.5 0.5
T \dO -0.2 0 02 041]-02 0 0.2 04 -0.2 0 02 04]-02 0 0.2 0.4
200 65 66 63 65| 41 44 49 47 71 66 6.1 60| 62 58 5.7 58
500 6.1 58 59 54|49 54 54 49 58 bH55 6.2 57|65 65 64 6.1
1000 5.7 55 57 50| 50 52 53 52 5.8 58 55 51| 57 53 53 55
¢) LM test: Power (T = 200)
do 0.2 0 0.2
f Joo Jai\ d | 04 02 0 02 |04 02 0 02 0402 0 02 04
-0.8 43.8 7.8 134 585|869 41.1 7.7 15.1 60.8 | 8.7 37.5 7.7 15.1
0 | -0.5 -0.5 33.7 6.5 278 772|812 315 6.6 279 788 |80.3 27.1 6.3 286
-0.2 12.6 15.1 588 953 | 50.3 123 15.0 589 95.7 | 50.7 122 144 614
0.2 8.8 402 86 11.3 |977 831 385 94 13.1|973 828 377 74
0 0.5 0.5 205 4.1 152 579|615 189 4.4 171 605|640 182 4.9 182
0.8 5.3 29.1 69.6 91.1 9.4 6.4 309 69.1 81.1 ] 104 74 31.0 538
-0.8 100 100 100 99.2 | 99.8 100 99.3 909 84.2 | 96.7 91.8 66.7 47.5
0.5 ] -0.5 -0.5 100 100 100 99.1 | 100 100 99 882 904|973 88.0 586 51.6
-0.2 100 100 100 99.5 {999 994 97.1 909 972 | 91.7 73.2 585 7512
0.2 99.4 93 558 31.2 984 93.7 66.1 21.2 173|982 86.6 464 124
0.5 ] 0.5 0.5 80.8 51.7 431 67.2 | 80.5 464 149 248 619|693 253 75 19.6
0.8 376 515 732 924|249 159 346 71.2 814 | 13.2 8.2 33.5 54.2
d) LMW -type test: Power (1" = 200)
do -0.2 0 0.2
e ‘ ap ‘ a1\ dy | -04 -0.2 0 02 | -04 -0.2 0 0.2 0.4 | -0.2 0 02 04
-0.8 91.9 628 50.1 715998 91.0 64.0 51.0 734|998 90.8 62.8 51.6
0 | -0.5 -0.5 349 7.1 274 767|836 315 6.6 270 783|823 29.1 6.1 288
-0.2 32.8 459 855 99.2 | 573 295 482 86.6 99.2 | 584 28.7 47.7 85.9
0.2 93.6 51.0 13.8 22.0|99.8 925 448 134 23.0|99.6 90.1 429 125
0 0.5 0.5 343 6.2 223 740|804 29.0 5.8 231 750|818 257 5.7 246
0.8 11.3 543 928 998 | 12.0 123 539 93.6 99.7 | 12.7 124 581 94.3
-0.8 100 100 100 99.2 | 100 100 99.9 96.7 88.81]99.9 99.6 923 726
0.5 ] -0.5 -0.5 100 100 100 99 | 100 100 98.5 86.9 908 | 979 873 559 50.6
-0.2 100 100 100 100 | 99.9 99.6 989 978 99.6 | 92.7 83.2 784 92.1
0.2 99.5 96.5 704 49.6 | 99.6 964 744 324 30.7 998 926 56.6 18.9
0.5 ] 0.5 0.5 90 679 58.2 836 |87.3 588 23.5 34 785|836 348 10.7 279
0.8 58.7 741 952 999|329 279 594 951 99.7 | 180 172 61.3 94.6
e) LMW -type test: Power under DGP-MA (T = 200)
do -0.2 0 0.2
i oo |\ d; |04 02 0 02|04 02 0 02 0402 0 02 04
-0.8 89.5 633 499 713|993 90.6 623 515 73.7 995 91.0 63.2 527
0 | -0.5 -0.5 266 7.1 252 783|778 275 6.6 270 804|798 288 6.1 299
-0.2 28.1 46.3 86.7 99.5 | 48.2 277 47.0 86.7 99.5 | 51.5 28.6 46.7 88.2
0.2 91.6 49.v 141 233 |99.6 903 454 122 253 |99.6 90.6 46.2 12.3
0 0.5 0.5 270 6.2 233 755 | 7.2 263 5.8 234 813|782 280 5.7 294
0.8 121 522 944 999 | 89 12.0 549 96.1 999 | 10.6 12.7 62.1 978
-0.8 100 100 100 99.4 | 100 100 99.9 96.6 879 | 100 994 92.1 75.7
0.5 1]-0.5 -0.5 100 100 100 99.1 | 100 99.9 982 872 894|991 881 570 518
-0.2 100 100 100 999 | 100 999 98.7 976 994 | 952 828 785 913
0.2 100 96.6 69.8 49.5 | 100 97.8 753 324 345 99.8 939 56.2 18.2
0.5 0.5 0.5 926 675 59.5 82.7 922 579 246 350 821 |83 371 10.8 333
0.8 59.5 732 96.1 999 | 33.1 263 623 96.0 100 | 188 18.7 653 98.1

Note: Rejection probabilities of 5% test for joint break in d, a and p at A\g = 0.5, py =0, 03 = 1.
Figures in bold characters correspond to simuld&ed sizes.



Table 4: Simulated size and power of the LMW-type test for a joint break in

memory, level and AR short-run dynamics of unknown order.
a) LMW- type test: Size

o 0.5 0.5
T \do -04 -02 O 02 04]-04 -02 0 0.2 04
200 7.5 73 70 6.8 70|72 69 72 70 6.1
500 6.7 6.7 6.7 64 6.2 6.6 64 66 59 5.6
1000 6.1 5.5 57 56 5.7 |6.2 5.7 55 48 5.1
b) Correct lag order selected by BG procedure under Hy
Qo 0.5 0.5
T \do -04 -02 O 0.2 04 |-04 -02 O 0.2 0.4
200 75.0 89.4 91.3 91.3 91.7 | 646 653 659 757 87.6
500 92.7 93.1 929 93.0 93.6 | 8.6 91.0 90.5 90.7 92.1
1000 93.5 93.2 93.1 933 936|920 925 929 93.0 934

Note: Proportion (in %) of cases where the BG correctly selects the correct AR(p) structure
¢) LMW- type test: Power (T' = 200)

do 0.2 0 0.2
pp | oo Joa\ dy [ 04 02 0 02][-04 02 0 02 04|02 0 02 04
0.8 920 650 50.6 72.0|99.6 91.6 646 524 720|997 914 625 52.9
0 |-05| -05 |31 7.3 278 783|842 335 7.0 274 794|847 315 6.8 299
0.2 331 502 87.9 995|624 330 49.7 882 994 | 60.3 30.7 494 88.2
0.2 |87.9 41.6 105 142|995 884 37.7 10.0 16.1 | 99.6 87.5 41.0 11.3
0 05| 05 |27.7 6.9 195 683|756 248 7.2 224 719|784 255 7.0 252
0.8 | 101 426 908 99.7|11.3 10.8 519 934 998 | 10.9 121 550 93.6
0.8 | 100 100 100 99.4 | 100 100 99.9 968 89.3 | 99.9 99.5 924 754
05| -05| -05 | 100 100 99.8 99.2 | 100 99.9 97.5 87.0 89.8 | 97.2 88.2 59.6 53.0
0.2 | 100 100 100 99.8 | 99.8 99.6 98.7 98.1 99.8 | 93.2 84.4 80.7 93.2
0.2 |99.0 917 580 350|988 950 642 253 223|995 91.0 47.8 159
05| 05| 05 |80.3 559 47.7 734|826 51.6 22.3 326 761|804 334 10.7 274
0.8 |40 604 92.6 99.7|284 219 57.0 935 998 | 16.6 165 56.8 94.9

Note: Rejection probabilities of 5% test for joint break in d, a and u at A9 = 0.5, pg = 0,03 = 1.

Figures in bold characters correspond to simulated sizes.

39



Table 5: Simulated size and power of the LMW-type test for a joint break in

memory, level and AR(3) short-run dynamics
a) LMW - type test: Size

a0 -0.5 0.5
T \dO -04 -02 0 02 04]-04 -02 0 0.2 04
1 69 11 74 73|47 53 61 55 56
6.7 67 69 59 61|44 40 49 50 5.1
59 64 57 57 58|41 41 43 50 5.1

Note: Rejection probabilities of 5% test for joint break in d, o and pu at A\g = 0.5, py =0, O'% =1
b) LMW- type test: Power (T' = 200)

do -0.2 0 0.2

p | a [\ dj[-04 02 0 02 ]-04 02 0 02 04]-02 0 02 04
0 |-0.5 -0.5 272 6.9 21.6 705|770 278 T.1 242 720 |79.0 265 7.4 235
-0.2 14.7 33.7 80.4 99.0. | 35.8 16.4 364 81.4 988 | 354 156 345 815
0 0.2 97.6 73.2 259 12.0| 100 975 728 252 115 | 100 97.5 73.6 26.7
0.5 0.5 209 5.3 172 619|724 221 6.1 181 658|729 216 5.5 186
0.5 1] -0.5 -0.5 100 100 99.9 99.0 | 99.9 99.7 96.5 86.5 87.2| 96.9 86.5 587 515
-0.2 100 100 99.9 99.9 | 99.2 983 96.8 96.3 99.5 | 8.2 74.1 70.7 88.1
0.5 0.2 95.8 76.5 33.6 16.7 | 99.7 976 742 295 13.7 999 974 740 274
0.5 0.5 27.2 7.8 195 64.3 | 745 24.5 6.3 19.5 67.4 | 740 25.3 7.8 19.8

Note: Rejection probabilities of 5% test for joint break in d, a and p at A\g = 0.5, py =0, 03 = 1.
ago = —0.5 and a9 € {—0.5,—0.2}, and agp = 0.5 and aq9 € {0.2,0.5} respectively. a;; = 0.5a;0 and

a0 = 0.25a50, © = 0, 1. Figures in bold characters correspond to simulated sizes.
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Table 6: Simulated size and power of the LMW-type test for a joint break in long
memory, level and ARFIMA(1,d,1) short-run dynamics
a) LMW -type test: Size for ARMA(1,1) innovations

o 0.3 0.5 0.8

T \dO -04 -02 0 02 041]-04 -02 0 02 04]-04 -02 0 0.2 04

200 85 73 70 71 59|68 74 68 67 49|59 56 49 43 5.1

500 73 70 67 68 6367 76 73 67 53|79 75 61 58 49

1000 64 62 62 57 55|57 65 63 64 56|60 57 53 53 50

b) LMW- type test: Power for ARMA(1,1) innovations (7" = 200)
do -0.2 0 0.2

g | oo |1\ dy|-04 -02 0 02]-04 -02 0 02 04[-02 0 02 04
0.2 86.3 375 10.6 164 |99.5 857 374 11.0 175 | 99.7 855 36.7 10.6
0 | 0.5 0.5 26.0 7.4 227 685|762 253 6.8 21.2 68.7|75.6 238 6.7 216
0.8 129 46.1 90.2 99.6 | 10.8 13.9 483 90.8 99.7 | 10.1 11.5 489 90.1
0.2 96.9 80.6 453 33.7| 986 91.3 55.1 204 246|994 883 444 15.2
0.5 | 0.5 0.5 66.4 36.6 426 733|782 396 16.7 283 699 | 766 263 9.9 228
0.8 352 61.1 927 99.7 | 223 201 546 91.3 996 | 13.3 152 534 918
Note: Rejection probabilities of 5% test for joint break in d, o and p at A\g = 0.5, pg =0, {; = 0.2,

03 = 1. Figures in bold characters correspond to simulated sizes.

Figure 1: Drift of the tests for a break in long memory parameter

Drift terms of the LM and LMW-type tests as a function of the break magnitude d;—d,.
LM test (dashed line) and LMW -type test (solid line) (A\g= 0.5, do= 0).
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Table 7: Simulated size and power of the LM and LMW-type tests for joint breaks

in memory, level and AR component with t(6) innovations.

a) LM test: Size b) LMW -type test: Size
ag -0.5 0.5 ag  -0.5 0.5
T \dy, 02 0 02 04|02 0 02 04 -02 0 02 04]-02 0 02 04
200 69 66 68 59|41 44 42 43 68 65 62 62|66 62 59 55
500 60 61 58 57|51 51 49 50 60 59 56 54|64 63 56 5.4
1000 55 58 55 55|49 53 50 47 53 57 54 55|58 59 54 53
c) LM test: Power (T = 200)
do 0.2 0 0.2
p a0 [ai\ di[-04 02 0 o02[-04 02 o0 02 04|02 0 02 04
08 |422 80 138 578|869 401 T2 151 59.1|87.0 381 64 154
0 |-05| -05 |315 6.9 247 77.5|80.9 305 6.6 27.2 783|816 279 6.8 288
02 |120 13.6 587 951|510 117 142 612 957|503 11.1 14.8 614
0.2 |82 413 85 104|977 83.0 384 88 11.7|97.2 816 37.1 8.9
0 [05| 05 |193 4.1 157 574|611 192 4.4 169 59.6 | 60.9 181 4.2 17.6
0.8 5.8 27.8 69.7 924 | 92 6.1 288 70.2 784 | 97 62 299 535
0.8 | 100 100 99.9 97.3 994 994 962 80.2 78.0 | 946 846 512 37.5
05[-05| -05 | 100 100 99.7 974|994 992 937 78.6 864|944 777 437 457
0.2 | 100 100 99.6 99.0 [ 99.0 97.1 89.8 859 96.9 | 847 59.6 451 69.7
0.2 |981 858 426 254|985 921 59.0 169 152 | 97.8 84.9 414 10.3
05[] 05| 05 |703 37.8 361 636|763 37.1 119 219 61.0 | 655 228 54 195
0.8 |206 449 730 918|210 118 336 69.9 797|125 7.0 309 52.3
d) LMW -type test: Power (1" = 200)
do 0.2 0 0.2
pp | oo Jan\ d [-04 02 0 o02]-04 -02 0 02 04 [-02 0 02 o4
08 |920 652 49.9 713 | 997 920 631 510 715|996 918 627 51.8
0 [-05| -05 |320 6.8 243 77.0| 827 31.0 6.5 264 778|836 286 6.2 275
0.2 309 454 854 993 | 57.7 300 452 860 99.40 | 569 29.0 46.0 86.8
0.2 |934 506 134 214 | 997 909 451 132 212 | 99.6 90.3 425 13.1
0 |05| 05 |324 6.6 234 748| 8.1 280 6.2 231 750|806 26.2 5.9 232
0.8 |12.6 51.6 932 99.8 | 11.80 11.9 520 934 99.7 | 1.0 123 542 93.6
0.8 | 100 100 100 97.8 | 100 100 995 91.3 850 | 99.9 987 87.4 68.5
05|-05| -05 | 100 100 995 96.9 | 99.7 99.3 923 757 861|952 774 422 456
0.2 | 100 100 99.9 99.9 | 99.1 983 958 957 99.6 | 865 720 705 89.9
0.2 |989 916 57.5 414 994 954 66.6 26.0 274997 920 49.6 16.1
05|05 | 05 |8.3 528 504 798| 84.6 486 184 31.6 759|820 331 9.0 26.0
0.8 |46.7 688 948 998 | 27.5 208 57.6 94.0 99.7 | 153 154 56.1 93.9

Note: Rejection probabilities of 5% test for joint break in d, o and p at Ao = 0.5, py =0, a% =1

Figures in bold characters correspond to simulz&ed sizes.



Table 8: Simulated performance of sequential testing procedure for the number
of breaks with LMW-type tests for a joint break in long memory and level
(unknown break fractions)
Detected number of breaks | Break fraction estimation
0 1 2 3 Ao M

a) (do,dy, dy) = (0,0.4,0) and (g, 1y, p2) = (0,0.5,0)

T=200 60.6 174 20.2 1.8 | 0.37 (0.077) 0.65 (0.057)

T=500 155 7.0 71.9 56 |0.35(0.052) 0.65 (0.050)

b) (do,d;,dy) = (—0.4,0,0.4) and (g, f11, i) = (0,0.5,1)

T=200 14 471 46.2 53 | 0.34 (0.046) 0.67 (0.075)

T=500 O 163 78.0 57 |0.34(0.023) 0.67 (0.057)

¢) (do,dy,dy) = (0,0.2,—0.2) and (1, i1, f15) = (0,0.5,1)

T=200 1.3 798 16.8 2.1 0.35 (0.077)  0.66 (0.076)

T=500 0 393 54.6 6.1 | 0.35(0.060) 0.66 (0.046)

Note: Proportion (in %) of detected number of breaks (left) and means and standard errors (in brackets)

of break fraction estimates for the cases in which correctly two breaks are detected (right).

5% test for joint break in d and p,e = 0.15, \g=1/3, \;= 2/3, ng 1.

Table 9: Breaks in the forward discount series
a) Detection of breaks by the LMW-type test with AR lag order selection by the BG procedure

Country  number of breaks break dates
Canada 1 1992(10)

France 2 1988(3), 1992(9)
Germany 1 1992(9)

Ttaly 2 1987(12), 1994(2)
U.K. 3 1981(8), 1990(2), 1992(7)

P

Note: Break dates from applying the sup-LMW 1 -type test for joint breaks in d, ;. and a.
b) Detection of the source of breaks by the robustified LMW-type test

Country  break dates
Canada  1992(10): (d, )", pu**
France 1988(3): (d, )™, pw**  1992(9): (d, )™, u**
Germany 1992(9): p**
Italy 1987(12): (d, )™, ™ 1994(2): (d, )™, u**
UK. 1981(8): pu** 1990(2): (d, )™, u**  1992(7): (d, )™, pu**
Note: * and ** denote statistical significance of the LMW 1 -type test at the 10% and 5% levels,

respectively.
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Figure 2: Distribution of break fraction estimates for LM and LMW-type tests
a) LM test
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Note: Break at A\g = 0.5 in memory from 0 to 0.4 and/or in level from 0 to 0.5. T=200 (yellow) and 500 (blank).
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Figure 3: Forward discount series:
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test procedure respectively. Horizontal lines indicate the estimated long memory parameters within each regime.
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