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Abstract

We consider a single-step Lagrange Multiplier (LM) test for joint breaks (at known or unknown

dates) in the long memory parameter, the short-run dynamics and the level of a fractionally

integrated time-series process. The regression version of this test is easily implementable and

allows to identify the speci�c sources of the break when the null hypothesis of parameter stability

is rejected. However, its size and power properties are sensitive to the correct speci�cation of short-

run dynamics under the null. To address this problem, we propose a slight modi�cation of the LM

test (labeled LMW-type test) which also makes use of some information under the alternative (in

the spirit of a Wald test). This test shares the same limiting distribution as the LM test under

the null and local alternatives but achieves higher power by facilitating the correct speci�cation

of the short-run dynamics under the null and any alternative (either local or �xed). Monte Carlo

simulations provide support for these theoretical results. An empirical application, concerning

�Corresponding author: Carlos Velasco, Department of Economics, Universidad Carlos III de Madrid,

Getafe, 28903 Madrid, Spain; E-Mail: carlos.velasco@uc3m.es. We are indebted to a Co-editor, an Associate

Editor and three anonymous referees for many useful comments that helped improve the paper substan-

tially. We also thank Eric Zivot for making the exchange-rate dataset available to us, Juan-Carlos Escan-

ciano, Robinson Kruse, Jesús Gonzalo, Uwe Hassler, Laura Mayoral, Peter Robinson, Abderrahim Taamouti

and participants in several seminars and workshops for helpful suggestions on earlier drafts of the paper.

Financial support from the Spanish Ministerio de Economía y Competitividad (grants ECO2016-78652

and ECO2017-86009-P, ECO2017-83255-C3-P, ECO2014-57007p and MDM 2014-0431), and Comunidad de

Madrid, MadEco-CM (S2015/HUM-3444) is gratefully acknowledged. The usual disclaimer applies.

1



the origin of shifts in the long-memory properties of forward discount rates in �ve G7 countries,

illustrates the usefulness of the proposed LMW-type test.

JEL Classi�cation: C13, C22

Keywords: LM Test, Structural Breaks, Long Memory, Level

1 Introduction

The confoundedness issues raised by Diebold and Inoue (2001) and Granger and Hyung (2004)

have sparked controversy about the origin of long-memory features in some time series processes.

Part of this debate has focused on whether long-memory is truly driven by a fractionally integrated

process of order d, I(d), or spuriously generated by level shifts in short-memory time series instead

(see, e.g., Lobato and Savin (1998), and Perron and Qu (2010)). Conversely, it has been claimed

that breaks in the memory parameter d could be misleadingly interpreted as breaks in the level,

�, of this type of stochastic processes (see, e.g., McCloskey (2010), and Shao (2011)).

These di¤erent views have led to two strands of research on this topic (for a general overview,

see Aue and Horváth 2011). The �rst one deals with testing for breaks only in d. Following the

rationalization of I(d) processes in terms of aggregation of heterogeneous persistent processes (see

Robinson 1978, and Granger 1980), it has been argued that policy regime changes can shift the

long-memory component of many macro and �nancial variables over relevant subsamples (see, e.g.

Gadea and Mayoral, 2005, for empirical evidence on these shifts in in�ation). Accordingly, several

tests have been proposed (both in the time and frequency domains) to test the null of a stable

value of d against the alternative of a structural break at known or unknown dates; see, inter alia,

Beran and Terrin (1996), Hassler and Scheithauer (2011) and Yamaguchi (2011).1

In parallel, another line of research has focused on the derivation of tests for breaks only in the

level � (or in other deterministic components) of stochastic processes with stationary long-memory

disturbances where d is constant; see, e.g., Hidalgo and Robinson (1996), Lavielle and Moulines

(2000), and Iacone et al. (2013). Lastly, there are also studies on the design of robust estimation

procedures of the memory parameter in the presence of level/trend shifts (see, e.g. McCloskey and

Perron, (2013)).

A common feature in most of the above-mentioned literature is that breaks are only allowed in

a single parameter (either in d or �). However, the more realistic case of potential joint breaks in

both parameters, and possibly in the short-run dynamics of an I(d) process, has received much less

1Forerunners of this line of research are Kim et al. (2002), Busetti and Taylor (2004), and Harvey et al.

(2009) who test for changes in time series from being I(0) to being I(1) or viceversa. Multiple changes are

tackled in Leybourne et al. (2007) and Kejriwal et al. (2013).
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attention. This is somewhat surprising since, following the detection of a break, it is important to

�nd out if its origin comes from only one or several parameters at the same time.2 Among the scant

literature on this speci�c issue, there are a few contributions related to ours to be highlighted. To

our knowledge, Gil-Alaña (2008) is the �rst paper to propose a single-step testing procedure based

on a Chow F-test. Yet, despite conjecturing that its limiting distribution corresponds to the one

derived by Bai and Perron (1998) for parameter breaks in regressions involving I(0) series, no formal

proof of this claim is provided. Next, Hassler and Meller (2014) have extended Robinson (1994)

and Breitung and Hassler�s (2002) LM test of I(1) vs. I(d) to deal with breaks in d, where level

shifts are also allowed. Their proposed test is conducted in a two-step sequential fashion. Initially,

the location of the mean break is detected using Hsu�s (2005) semiparametric testing approach;

next, the corresponding broken mean is removed from the time series to test for a break in d.

However, the issue of how the two-step procedure a¤ects the asymptotic properties of the test is

not analyzed by these authors. This could be problematic in some instances: for example, � could

be very imprecisely estimated at the demeaning stage when d is close to 0:5, due to the T 1=2�d rate

of convergence of the sample mean estimator. Some of these shortcomings have been addressed

by Rachinger (2017), who proposes a uni�ed (single-step) testing procedure for modelling joint

breaks. As in Gil-Alaña (2008), this author extends Bai and Perron�s (1998) test from I(0) to I(d)

processes by proposing a Likelihood Ratio (LR) version of the standard Chow test for the null of

parameter stability of d and � when d 2 [0; 0:5). Consistency results, T -rate convergence of the
break fraction estimator and the limiting distributions of the estimated parameters under di¤erent

sources of breaks are derived.

Our main goal in this paper is to propose LM alternatives to the LR test for joint parameter

breaks in I(d) processes because the use of restricted estimates under the null makes LM tests

computationally much simpler. In particular, as in Hassler and Meller (2014), we focus on the

derivation of a regression version of the LM test which provides a linearization of the true model

under local alternatives involving parameter breaks. Yet, we di¤er from their approach in several

important respects. First, to address the shortcomings of their two-stage procedure, we derive

a single-step LM testing procedure. Second, in addition to breaks in d and �; we also allow

for shifts in the short-run dynamics of an I(d) process, which are modelled using a parametric

autoregressive process of order p, labeled AR(p).3 A potential limitation of the LM test, however,

2Dolado et al. (2008) argue that it is important to distinguish between breaks in d and in � for at least

two reasons. First, because it can improve forecasting; in particular, the larger d is, the more observations

are required to produce good forecasts. Second, because if d is estimated too high due to shifts in � in

bivariate systems, fractional cointegration could become a spurious outcome.
3Although a semiparametric approach would help us abstract from short-term dynamics when estimat-

ing d, we opt here for a parametric approach due to our interest in identifying further potential breaks in

the short-term dynamics. We choose an AR(p) process to model short-run dynamics because this type of
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is that its implementation requires the restrictive assumption of a known lag length of the AR(p)

process under the null, which might not be the correct one under the alternative. Inspired by

Wooldridge (1990), we �x this problem by means of an alternative regression-based LM test which,

besides yielding consistent estimation of p when parameters are allowed to shift, exhibits higher

power than the LM test for joint breaks under �xed alternatives. The insight for this power gain

is that, unlike the local approximation provided by the LM test, the new test yields an exact

regression representation of the true model speci�cation under any alternative (local or �xed),

where the relevant coe¢ cients to be tested happen to be linearly related to the parameters of

interest. As a result, it can also be partially interpreted as a Wald test and, for this reason, it is

labeled "LMW-type" test in the sequel.

LMW-type tests have been proposed by Dolado et al. (2002, 2009), and Lobato and Velasco

(2007) to test the nulls of I(1)/I(0) against the alternative of I(d) processes, with d 2 (0; 1) under
the assumption of parameter stability. We extend their testing approach by allowing for joint

breaks in d, � and the short-run dynamics when the null is an I(d) process with stable parameters.

Moreover, both LM and LMW-type tests can deal with shifts in d 2 (�0:5; 0:5) under the alternative
hypothesis, covering a wider range of values than those considered by Rachinger�s (2017) LR tests.

This generalization can be achieved because the only requirement for implementing our LM tests

is adequate performance of the constrained estimators of the parameters under the null, whereas

LR tests also require good performance of the unconstrained estimators.

Summing up, by deriving single-step LM and LMW-type tests (and their asymptotic distribu-

tion under the null and alternatives), this paper contributes to the relevant literature on detecting

the source of breaks in persistent time-series processes. More concretely, the proposed tests: (i)

allow to test for the presence of joint or individual breaks in a wide range of parameters, involv-

ing non-stable long-memory dynamics, short-run dynamics or the level parameter; (ii) are easily

implementable by means of regression methods under the joint null of parameter stability; (iii)

exhibit similar asymptotic behaviour under the null and local alternatives but the LMW-type test

has higher power under �xed alternatives, especially when short-run dynamics are present;4 (iv)

provide consistent estimates of the break date when considered to be unknown; and (v) can be used

when either breaks in di¤erent parameters might not be coincidental in time or when there are

multiple breaks. Finally, our empirical application on potential breaks in forward discount rates

for several G7 countries provides new �ndings on their origin (in dynamics and/or in levels), an

issue which has raised considerable attention in the literature on exchange rates.

The rest of the paper is structured as follows. In Section 2, we lay out the data generating

process can be easily incorporated in the regression version of the LM tests.
4Notice that, in spite of the nonlinear nature of our proposed tests, this result somehow echoes the

well-known ranking in terms of power of Wald and LM tests in linear regression setups; see Engle (1984).
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processes (DGP). In Section 3 and Section 4, we derive the LM and LMW-type tests, respectively.

Sections 5 and 6 are devoted to study their asymptotic properties both under the null and under

local and �xed alternatives, distinguishing between two di¤erent settings: known and unknown

break dates, and brie�y sketch how the tests could be generalized to account for non-coincidental

and multiple breaks in time. In Section 7, we provide simulation results regarding the �nite-sample

performance of the tests. In Section 8 we discuss an empirical application related to the detection

of structural changes in the forward discount of exchange rates. Finally, Section 9 concludes. All

the proofs, some technical results, and additional simulation results are gathered in an Online

Appendix.

2 Data generating process

For simplicity, we start by considering the case of a single breakpoint (at a known or unknown

date) which changes in the asymptotics as a fraction �0 of the sample size; �0 lies in the interval

� = [�; 1� �], where � > 0 is assumed to be known. In particular, we consider an autoregressive

I (d0) (i.e. ARFI (p; d)) process with long memory parameter d0 2 D; where D � (�0:5; 0:5),
level �0 and short-run dynamics captured by a �nite order AR lag polynomial �0 (L) during the

�rst subsample, t = 1; : : : ; [�0T ]. This process may become I (d1) with d1 2 D; level �1 and

autoregression �1(L) during the second subsample, t = [�0T ] + 1; : : : ; T .5 These assumptions lead

to the following transition model, considered as the DGP in the sequel

�t (L)�
dt
t (yt � �t) = "t; t = 1; 2; : : : ; (1)

with "t � i.i.d.(0; �20). The shifting parameters are de�ned as:

�t (L)�
dt
t = 1 (t � [T�0])�0 (L)�d0

t + 1 (t > [T�0])�1 (L)�
d1
t ;

�t = 1 (t � [T�0])�0 + 1 (t > [T�0])�1;

where 1(�) is an indicator function of the relevant subsample; [x] denotes the integer part of x;
and �i (L) = 1� �1;iL � � � � �p;iLp are stable AR lag polynomials of known order p with unknown
coe¢ cients �i = (�1;i; : : : ; �p;i)

0, i = 0; 1, such that �i 2 Int (A) where A is a compact set such

5Our choice of the stationary and invertible range D � (�0:5; 0:5) is dictated in part by the result in
Hualde and Nielsen (2019) showing that consistent estimation of the level in an ARFIMA (p; d; q) process

with a constant term (0 = 1, in their notation) and d lying in an arbitrarily large �nite interval requires

d < 0:5. However, when d > 0:5; the estimates of the other parameters governing the dynamics of the process

are consistent and asymptotically normal, as in Hualde and Robinson (2011). Remark 4 below includes a

further discussion about the implementation of our tests when d0; d1 > 0:5.
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that all the roots of �i (L) are outside the unit circle.6 At [�0T ], a shift in the parameters of the

DGP in (1) is allowed, so that d1 = d0 + �0, �1 = �0 + �0, and �1 (L) = �0 (L) + �0 (L), where

�0 (L) is another lag polynomial with �0 (0) = 0 and coe¢ cients �0 =
�
�1;0; : : : ; �p;0

�0. Finally,
�b
t :=

t�1P
j=0

�j(b)L
j , where �j (b) :=

�(j�b)
�(�b)�(j+1) ; j = 0; 1; : : : ; denotes the (truncated or "Type II")

fractional-di¤erencing �lter for b 2 D. It should be noted that Hualde and Nielsen (2020) have

previously analyzed the estimation and inference of a similar process to DGP (1) with more general

short-run dynamics than the AR(p) process assumed here, but with stable parameters. To relax

this last assumption and provide inference on the existence and location of a break, our proposed

LM approach relies on restricted-parameter estimation under the null of no breaks.

Remark 1. Notice that the previous de�nition of �dt
t implies that the �lter applied to (yt � �t)

is
Pt�1

j=0 �
�
j (d0;�0) when t < [�0T ]; and

Pt�1
j=0 �

�
j (d1;�1) when t > [T�0], where �i (L)�

di
t :=Pt�1

j=0 �
�
j (di;�i)L

j : We prefer to use this truncated "Type II" �lter, rather than a non-truncated

"Type-I" �lter, because it facilitates the treatment of non-stationary series with d > 1=2 after �rst

di¤erencing (see Remark 4 below).

Remark 2. Notice that, by rewriting the DGP as yt = �t +
�
1� �t (L)�dt

t

�
(yt � �t) + "t, and

using the truncated �lters ��j (di;�i), i = 0; 1 recursively, it follows that

yt = �0 �
t�1X
j=1

��j (d0;�0) fyt�j � �0g+ "t; for t � [T�0]

yt = �1 �
t�[T�0]�1X

j=1

��j (d1;�1) fyt�j � �1g �
t�1X

j=t�[T�0]
��j (d1;�1) fyt�j � �0g+ "t; for t > [T�0];

implying that the chosen �lter guarantees that the lags of yt in the autoregression are centered

around the appropriate value of the level �t in each of the two subsamples. Likewise, it ensures

that all past information is discounted at the relevant value of d to generate each new observation

before and after the break.

Remark 3. An alternative DGP that could be considered is the following

yt = �t +�
�dt
t ��1t (L) "t; t = 1; 2; : : : ;

with "t � i.i.d.(0; �20), such that

��dtt ��1t (L) = 1 (t � [T�0])��d0t ��10 (L) + 1 (t > [T�0])�
�d1
t ��11 (L) ;

�t = 1 (t � [T�0])�0 + 1 (t > [T�0])�1:
6Formally the previous expression for the �lter �t (L)�

dt
t should be multiplied by 1(t > 0) since nesting

the AR(p) lag polynomial �t (L) with the truncated fractional �lter �
dt
t would require using pre-sample

observations (negative lags). However, for simplicity, we omit this more precise notation in the sequel.
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Rather than based on an autoregressive representation as in (1), this DGP (labeled DGP-MA to

distinguish it from DGP (1)) provides an alternative de�nition of a breaking stochastic process

based on a moving average that reweights in each period the whole sequence of innovations from

t = 1 but ignores how the observations were actually generated prior to t. Although we show that

our proposed tests are also consistent under local or �xed alternatives for DGP-MA (see Corollaries

2 and 3 below), we prefer to work with the autoregressive DGP (1) on the grounds that, while the

level of yt is adjusted immediately after the break in both DGPs, DGP-MA reinitializes completely

the process after the break, i.e. yt = �1 + �
�d1
t ��11 (L) "t for t > [�0T ] does not depend on d0:

Instead, under DGP (1), observations yt for t = [�0T ]+1; [�0T ]+2; : : : ; T are generated by �ltering

all (centered) past observations with the new memory value d1; so that for t > [�0T ] ;

yt � �1 =
�
��d1t ���d1t�[T�0]

�(�d1�d0
t

�0 (L)
"t

)
+��d1t�[T�0]�

�1
1 (L) "t;

where the �rst term on the RHS accounts for innovations prior to the break and the second term

for the ones afterwards, which are treated in the same way in both DGPs. Further, DGP (1) is

more amenable to analytical and numerical analysis because, in practice, the easiest way to obtain

residuals is to use autoregressive fractional �lters on observed data, which are easily computed by

means of fractional di¤erencing. By contrast, DGP-MA requires the use of a more complicated

recursive procedure based on implicitly de�ned residuals. In e¤ect, �1 (L)�
d1
t (yt � �t) 6= "t for

t > [�0T ] when data are generated by that DGP, as this �ltering ignores that observations were

integrated with d0 up to t = [�0T ]. Power comparisons of the tests for data generated under either

DGP are provided in Section 7 (Block (III)) showing that di¤erences are minor.

Remark 4. Our approach can also deal with a non-stationary process with both d0; d1 > 0:5, and

a potentially breaking linear trend, such that

�t(L)�
dt
t (yt � �t � �tt) = "t;

with �t = �01 (t � [�0T ])+�11 (t > [�0T ]) ; by applying our testing procedure to the �rst-di¤erenced
data, �yt, to test for breaks in the trend slope �t and in the memory dt � 1. To provide initial
consistent estimates of non-stationary values of d under the null, one possibility is to use Hualde

and Nielsen�s (2020) estimation procedure for I(d) processes (with d lying in an arbitrarily large

interval). Once this initial estimate is �rst di¤erenced, our proposed tests in a stationary setup

would be valid.

In sum, using the previous notation for potential shifts in the memory parameter (�0), the

stable AR component (�0) and in the level (�0), and labeling the dummy variable for the second

subsample (regime) as Rt (�) = 1 (t > [�T ]), the following model will be considered in Sections 3
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and 4 to develop our testing procedures (under coincidental breaks),7

(�0 (L) +Rt (�0)�0 (L))�
d0+�0Rt(�0)
t (yt � �0 � �0Rt (�0)) = "t, t = 1; : : : ; T:

Remark 5. It is important to highlight at this stage that the assumption of known lag length p

under the null of no break in the short-memory parameters could be highly restrictive. In e¤ect,

if the chosen p is not the right one, this could lead to incorrect inference about the existence of

breaks. In practice, following Schwert (1989), Hassler and Meller (2014) argue that many short

memory processes can be approximated by letting p grow with T , e.g. according to the rule of

thumb: p = [4(T=100)1=4]. However, unlike us, these authors do not allow for breaks in the AR

polynomial �(L): Hence, for analytical tractability, the derivation of the asymptotic distribution

of the LM test will proceed momentarily under the assumption of known p, while later it will be

shown that the use of the LMW-type test avoids such a restrictive assumption.8

3 Score-driven and regression-based LM tests

According to the LM principle, we test the null hypothesis:

H0 : (�0;�
0
0; �0) = 0; (H0)

against the alternative hypothesis where all parameters are allowed to shift at a fraction �0 of the

sample size, which for the moment is assumed to be known:

H1(�0) : (�0;�
0
0; �0) 6= 0: (H1)

From (2), the following Gaussian pseudo-log-likelihood function is used

LT ( ; �) = �
T

2
log
�
2��2

�
� 1

2�2

TX
t=1

"t ( ; �)
2 ; (2)

for every possible breakpoint �, and  =
�
�;�0; �; d;�0; �; �2

�0, where the de�nition of the error
term above is given by

"t ( ; �) = (�0 (L) +Rt (�)�0 (L))
�
�
d0+�Rt(�)
t (yt � �0)� ��

d0+�Rt(�)
t Rt (�)

�
:

7An equivalent representation yielding identical results would be to consider the model

(�1 (L)� St (�0)�0 (L))�
d1��0St(�0)
t (yt � �1 + �0St (�0)) = "t; with St(�) = 1�Rt(�) = 1 (t � [�T ]) :

8Ideally the number and location of breaks, and the number of autoregressive lags of the time-series

processes should all be chosen simultaneously, but this is well beyond the scope of the paper. Thus, it is

preferable to shape our approach for break testing as being robust to the choice of p by taking it large

enough as to provide a good �t, but without allowing it to grow with T since this would not only involve a

completely di¤erent asymptotic theory but also a¤ect the power properties of the proposed LM tests.
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For each �, the LM test is based on the derivatives of LT ( ; �) in the direction of  , evaluated
at the restricted estimates ~ T = (0;0

0; 0; ~d0T ; ~�
0
0T ; ~�0T ;~�

2
0T )

0. The last four elements of ~ T denote

estimates of parameters d0;�00; �0 and �
2
0, respectively, under the null of no breaks, where the

whole sample of observations, t = 1; : : : ; T; is used to obtain such estimates.9 In particular, the

score-driven formulation of the LM test becomes

gLMT (�) =
@LT ( ; �)

@ 0

����
 =~ T

 
� @2LT ( ; �)

@ @ 0

����
 =~ T

!�1
@LT ( ; �)

@ 

����
 =~ T

; (3)

where the score in the directions of �, � and � can be expressed as

~L�;T (�) =
@LT ( ; �)

@�

����
 =~ T

= � 1

~�20T

TX
t=[�T ]+1

(log�t~"t) ~"t

~L�;T (�) =
@LT ( ; �)

@�

����
 =~ T

= � 1

~�20T

TX
t=[�T ]+1

0BB@
~��1T (L) ~"t�1

: : :

~��1T (L) ~"t�p

1CCA~"t
~L�;T (�) =

@LT ( ; �)
@�

����
 =~ T

=
1

~�20T

TX
t=[�T ]+1

(~�T (L)�
~d0T
t�[�T ]1)~"t:

In the previous expressions, log�t~"t = �
Pt�1

j=1 j
�1~"t�j depends on the restricted residuals ~"t which

are de�ned as follows

~"t = "t

�
~ T

�
= ~�T (L)�

~d0T
t (yt � ~�0T ) ; t = 1; 2; : : : ; T; (4)

while their corresponding variance estimator is given by

~�20T =
1

T

TX
t=1

~"2t : (5)

As mentioned above, the restricted estimates of the parameters required to compute ~"t result from

minimizing the conditional sum of squares (CSS) over the whole sample,

( ~d0T ; ~�0T ; ~�0T ) = arg min
d2D;�2A;�

TX
t=1

�
� (L)�d

t (yt � �)
�2
: (6)

The properties of ~d0T have been discussed, inter alia, in Chung and Baillie (1993), Robinson (2006)

and Hualde and Robinson (2011) in models without drift (� = 0); and in Hualde and Nielsen (2020)

when there is a drift.10

9See below for why the whole sample, rather than the �rst subsample, is chosen, and for further details

on the estimation procedure.
10In particular, Hualde and Robinson (2019) show that the estimators ~d0T and ~�0T are T 1=2-consistent

and asymptotically normal for d0 2 Int (D) and �0 2 Int (A), while ~�0T is T 1=2�d0-consistent.
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The relevant block of the inverse Hessian matrix concerning the subset of parameters
�
�;�0; �

�
of  can be approximated (using the arguments in the proof of Theorem 1 below) as24 @2LT ( ; �)

@ @ 0

����
 =~ T

!�135
[1:(2+p);1:(2+p)]

= eP�1=2
0@ @2LT ( ; �)
@
�
�;�0; �

�0
@
�
�;�0; �

������
 =~ T

1A�1eP�1=2 (1 + op (1)) ;
where ePT is a scaling matrix de�ned as

ePT = PT

�
�; ~d0T

�
=

0@ � � Ip+1 0

0
LT ( ~d0T ;�;�)�L2T ( ~d0T ;0;�)

LT ( ~d0T ;�;�)

1A ; (7)

which captures the e¤ect of replacing the unknown values of d0, �0 and �0 by their (restricted) es-

timates, where LT (d; a; b) = T 2d�1 (1� 2d) �2 (1� d)
PT

t=[max(a;b)T ]+1(�
d
t�[aT ]1)(�

d
t�[bT ]) and Ip+1

is a p+ 1 dimensional identity matrix.

As in Breitung and Hassler (2002) test, the previous gLMT (�) test statistic has a simple re-

gression model representation, where the underlying regression provides a linearization of the true

model under local alternatives involving parameter breaks. The regression-based version of the LM

test is equal to T times the coe¢ cient of determination ~R2T (�) in a linear regression model of the

restricted residuals ~"t on the scores of the general model, namely,

~"t = �0 + �
0
�
~Z
(p)
t (�) + �0Z ~Z

(p)
t (0) + errort; (8)

with the vector ~Z(p)t (�) = Z
(p)
t

�
�; ~d0T ; ~�0T ; ~�0T

�
being de�ned as

Z
(p)
t (�; d;�; �) =

0BBB@
Rt (�) log�t"t (0;0

0; 0; d;�; �)n
Rt (�)�

d
t�j (yt�j � �)

op
j=1

� (L)�d
tRt (�)

1CCCA ;

where the role of the regressor ~Z(p)t (0) = Z
(p)
t

�
0; ~d0T ; ~�0T ; ~�0T

�
is to control for the e¤ect on the

test of having estimated parameters under the null of no breaks.

Finally, when the break date is taken to be unknown, the corresponding LM test becomes

gLMT

�
~�T

�
= sup

�2�
gLMT (�) ;

where, as de�ned above, � = [�; 1� �] ; and ~�T = argmax�2� gLMT (�) :

4 Regression-based LMW-type tests

As an alternative to the LM test based only on the restricted ML estimates, an LMW-type test

(based on an auxiliary regression using information under the alternative) can be derived along the
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lines of Lobato and Velasco (2007). Building upon previous results by Dolado et al. (2002), Lobato

and Velasco (2007) derive an E¢ cient Fractional Dickey Fuller (EFDF) test for the null hypothesis

of d = 1 against the alternative of d < 1, which was later extended by Dolado et al. (2009) by

allowing the null to be any memory d = d0 against the alternative d 6= d0. These authors show

that, despite their asymptotic equivalence under local alternatives, the EFDF test could achieve

higher power under �xed alternatives than the conventional LM test because it provides a better

approximation of the DGP in such a case (see Remark 6 below). In line with these �ndings, our

strategy here is to propose a similar test statistic designed to allow for joint breaks in d;� and �,

where the null hypothesis is given by (H0) above.

For simplicity, we start with the case where the break date �0 and the parameters d0;�0 and

�0 are all assumed to be known. Thus, under shifts, the data for t = [T�0] + 1; : : : ; T is generated

by �1 (L)�
d1
t (yt � �t) + "t, which satis�es

�0 (L)�
d0
t (yt � �0) = �0 (L)�

d0
t (yt � �0)� �1 (L)�d1

t (yt � �t) + "t

= �0 (L)
h
1���0

t

i
�d0
t (yt � �0) + �0 (L)�d1

t (yt � �0 � �0Rt (�0))

+�0�0 (L)�
d1
t Rt (�0) + "t;

where recall that d1 = d0+ �0; �1 (L) = �0 (L)+�0 (L) and �1 = �0+ �0 with �t = �0+ �0Rt (�0)

and �d
tRt (�) =

Pt�1
j=0 1 (j < t� [T�])�j (d) =

Pt�[T�]�1
j=0 �j (d) = �t�[T�]�1 (d� 1) : Then, a test

for the joint null of
�
�0;�

0
0; �0

�
= 0 in (H0) can be constructed by means of testing the following

null hypothesis

H0 : #1 = #2 = � � � = #2+p = 0

in a regression given by

�0 (L)�
d0
t (yt � �0) = #1�0 (L)

"
1���0Rt(�)

t

�0

#
�d0
t (yt � �0) (9)

+

pX
j=1

#j+1Rt�j (�)�
d1
t�j (yt�j � �0 � �0Rt�j (�))

+#p+2�0 (L)�
d1
t Rt (�) + "t;

for t = 1; : : : ; T , and each �: Denoting � = (#1; #2:::; #2+p)
0 ; "0t = �0 (L)�

d0
t (yt � �0) ; we de�ne

X
(p)
t (�) = X

(p)
t (�; �; �; d;�0; �) for each (�; �; �; d;�0; �),

X
(p)
t

�
�; �; �; d;�0; �

�
=

0BBB@
� (L)

h
1���Rt(�)

t

�

i
�d
t (yt � �)n

Rt (�)�
d+�
t�j (yt�j � �� �Rt�j (�))

op
j=1

� (L)�d+�
t Rt (�)

1CCCA ;

so that regression (9) can be rewritten in a more compact way as

"0t = �
0X0

t (�) + "t; (10)

11



with X0
t (�) = X

(p)
t (�; �0; �0; d0;�

0
0; �0) :

Remark 6. Note that the implementation of the LMW-type test based upon regression (10) is

closely related to the regression-based version of the LM test since the arti�cial regressor Z(p)t (�)

used in (8) corresponds to the limit of X(p)
t (�) as �; � ! 0:11 Hence, while the regression-based

LMW-type test provides an exact representation of the DGP under local and �xed alternatives,

the LM test only provides an accurate approximation under local alternatives. As a result, the

limiting behaviour of both tests will be identical under local alternatives but it will di¤er under

�xed alternatives (i.e. when �; � 9 0).

Remark 7. As pointed out in Remark 5, the LM test fails to provide direct information on

whether the choice of the lag length p ensures i.i.d. innovations under �xed alternatives. However,

this is not a problem for the LMW-type test which, by making use of additional information under

the alternative, is able to yield i.i.d. residuals under both the null and the alternative, leading to

potential power gains relative to the LM test. Subsection 6.1 below provides further details on how

to choose p when implementing the LMW-type test.

Under the more realistic assumption of unknown d0;�0 and �0, running regression (10) requires

the estimation of these parameters (on top of � and �). With regard to d0;�0 and �0, our suggestion

is to use the restricted estimates ~d0T , ~�0T and ~�0T obtained from minimizing (6) under the null

with observations for the whole sample. This facilitates comparisons with the LM test that uses

the entire sample to compute these estimates under the null.12 As regards the estimation of � and

�, one can set �̂T (�) = d̂1T (�) � ~d0T and �̂T (�) = �̂1T (�) � ~�0T where d̂1T (�) and �̂1T (�) are
this time the CSS estimates using observations from the second subsample. Hence, from (11), this

procedure implies the following feasible regression representation of the LMW-type test

~"t = �
0 ~X

(p)
t (�) + et (11)

where the restricted residuals ~"t = ~�0T (L)�
~d0T
t (yt � ~�0T ) are regressed on ~X

(p)
t (�) = X

(p)
t (�,

�̂T (�), �̂T (�), ~d0T , ~�0T , ~�0T ).

Testing for breaks in all the parameters corresponds to testing the joint null hypothesis of

#1 = #2 = � � � = #2+p = 0 in (11). Likewise, testing for a break in only a subset of the parameters

can be easily accommodated. For example, a test for a break only in both memory and short-run

dynamics (resp. only in �) corresponds to testing the null hypothesis of #1 = � � � = #1+p = 0 (resp.

#2+p = 0).13 Thus, from regression (11), the LMW-type test statistic for the joint hypothesis

11As pointed out in LV (2007), notice that, for � ! 0, the �lter
h
1���

t

�

i
becomes � log�t when � ! 0,

which corresponds to the well-known lag �lter
Pt�1

k=1 k
�1Lk used in the regression-based LM test.

12In addition, as will be illustrated in our simulation study, the size in �nite samples of the LMW-type

test becomes closer to the nominal size when the whole sample is used.
13As before, note that if only a subset of the parameters is assumed to shift, a test not allowing for a
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H0 : � = 0 is de�ned as

L̂MW T (�) = ~�T (�)
0 ~V �1T (�) ~�T (�) ; (12)

where ~�T (�) =
�
~#1T (�) ; ~#2T (�) ; :::; ~#2+pT (�)

�0
denotes the LS estimate of �; while

~VT (�) = �̂2T (�) eP 1=2T

 
TX
t=1

~X
(p)
t (�) ~X

(p)
t (�)0

!�1 eP 1=2T

denotes its variance estimate.14 The error variance �̂2T (�) is obtained as

�̂2T (�) =
1

T

[T�]X
t=1

�
�̂0T (L)�

d̂0T
t (yt � �̂0T )

�2
+
1

T

TX
t=[T�]+1

�
�̂1T (L)�

d̂1T
t�[T�] (yt � �̂1T )

�2
(13)

which corresponds to estimation under the alternative, as the LS estimates ~�T (�) of regression

(11) reproduce
�
�̂T (�) ; �̂1T (�)� �̂0T ; �̂T (�)

�
to match the CSS estimators

�
d̂0T ; �̂0T ; �̂0T

�
and�

d̂1T ; �̂1T ; �̂1T

�
for the �rst and second subsamples, respectively. As a result, the regression-based

LMW-type test can be computed as T times the R2 of regression (11) augmented by ~X
(p)
t (0) to

account for the estimation e¤ect of the di¤erent parameters required to compute (12).

Finally, as with the LM test, the LMW-type test statistic for unknown break date becomes

sup
�2�

L̂MW T (�) = L̂MW T (~�T );

where ~�T = argmax�2� L̂MW (�).

5 Asymptotic properties of LM tests

5.1 Asymptotic theory of LM tests under local alternatives

We next derive the asymptotic distributions of the proposed ]LMT tests under the following set of

assumptions:

Assumption 1. The true lag length p of the stable short-run dynamics AR polynomial �(L) is

known.

break in the non-tested parameter again should enjoy better �nite sample properties (e.g. setting �0 = �1
or � = 0 in (9) when testing for a break in the dynamics, that is H0 : #1 = #2 = ::: = #1+p = 0).

14In the case when (d0;�0; �0) are taken as known, it follows from the discussion in Wooldridge (1990)

and LV (2007) that the estimation of (�; �) by
�
�̂T (�) ; �̂T (�)

�
does not a¤ect the limiting distribution of

the LMW-type test in (10) under the null. However, this is no longer true when (d0;�0; �0) need to be

estimated since these estimates a¤ect the dependent variable in regression (11), increasing the variance of

the LMW-type test statistic. This is re�ected by the need to pre- and post-multiply by eP 1=2T in the de�nition

of ~VT (�) compared to the usual least-squares expression.
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Assumption 2. "t � i:i:d:
�
0; �20

�
with q moments such that q > maxf4; 2

1�2d0 g.

Assumption 3. d0 2 Int (D) ; D =
�
d; �d
�
, �0:5 < d < �d < 0:5; �0 2 Int (A) ; where A is a

compact set, and �0 2 �:

As pointed out in Remark 5 above, Assumption 1 is adopted here for convenience: it just to

facilitates a direct comparison of the asymptotic distributions of the LM and LMW-type tests,

which will be shown to be identical under the null and local alternatives (see Theorem 2 and

Proposition 5 further below).15 By contrast, this assumption becomes redundant when deriving

the properties of the LMW-type test, which provides a consistent data-driven choice of p under the

null and alternative (see Subsection 6.1 below). For the speci�c case of d0 2 Int (D) ; Assumptions
2 and 3 are equivalent to the conditions required by Hualde and Nielsen (2020) in their treatment

of the more general setup where d0 lies in a compact set which can be arbitrarily large, but where

no breaks are considered. Lastly, as in in Marinucci and Robinson (2000), Assumption 3 re�ects

that at least four moments are required to prove tightness for weak convergence.

To derive the asymptotic null distribution and local power of the LM test, we analyze its

properties under the following sequence of local-break alternatives,

Hd;�;�
1;T (�0) :

�
�0;�

0
0; �0

�
=
�
�=T 1=2; 0=T 1=2; �=T 1=2�d0

�
; (14)

for some �0 2 �; where  =
�
1; : : : ; p

�0, and the null is recovered by setting (�; 0; �) = 0 while
leaving �0 unspeci�ed.

We next derive the asymptotic distribution of the gLMT test in (3) in the case of an unknown

break fraction �, which is a function of both standard Brownian Motion (BM) and fractional BM

(fBM).

Let � = (�1; : : : ; �p)
0 with �k =

P1
j=k j

�1cj�k; k = 1; : : : ; p, where the cj are the coe¢ cients of

Lj in the expansion of 1=�0 (L) ; and � = f�k;jg ;�k;j =
P1

t=0 ctct+jk�jj; k; j = 1; : : : ; p, denotes

the Fisher information matrix for � under Gaussianity. Further, let

$p (�; �;) = �
1=2 fBp+1 (�)� �Bp+1 (1)g+�

 
�



!�
� (1� �0)� (�� �0)+

�
; � =

 
�2=6 �0

� �

!
;

where Bp+1 is a (p+ 1)-dimensional standardized BM.

Next, de�ne

A0d;p (�; �;) =
1

� (1� �)$p (�; �;)
0 ��1$p (�; �;)

and

A0� (d0; �; a)=
(Wd0 (1� �)� L (d0; 0; �)Wd0 (1) + a (L (d0;�; �0)� L (d0; 0; �0)L (d0; 0; �)))

2

L (d0;�; �)� L2 (d0; 0; �)
;

15In addition, this assumption helps de�ne the robusti�ed versions of the two tests to the true source of

the break under the alternative (see Subsection 5.2.1 below).
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where L (d; a; b) = (1� 2d)
R 1
max(a;b) (s� a)

�d (s� b)�d ds (so that L (d; a; a) � (1� a)1�2d and
L (0; a; b) = 1�max (a; b)) andWd0 (�) = (1� 2d0)

1=2 R �
0 (�� s)

�d0 dB (s) is the standard fBM (so

thatWd0 (1) has unit variance and Cov(Wd0 (a) ;Wd0 (b)) = (1� 2d0)
R min(a;b)
0 (a� s)�d0 (b� s)�d0 ds =

L (d0; 1� a; 1� b)).

Then, the following result holds.

Theorem 1 With an unknown break fraction �0, under Assumptions 1, 2 and 3 and H1T (�0),

sup
�2�

gLMT (�)
d! sup
�2�

�
A0d;p (�; �;) +A0�

�
d0; �;

�=�0p
1� 2d0� (1� d0)

��
;

where the two terms on the right hand side are independent.

Remark 8. The asymptotic distribution of the sup-gLMT (�) test under H0 is then given by

sup
�2�

�
A0d;p(�; 0;0) +A0� (d0; �; 0)

	
:

Since the break fraction is not identi�ed under the null of no structural breaks, the distribution

above is non-standard. Besides, it only depends on d0, but not on �0;�0 or �0. Critical values

of such limiting distribution are reported in Table 1 for a grid of values of d0 and � generated as

in Theorem 1 above, using 10,000 grid points for the break fraction and 100,000 simulations. To

compute the critical values for an unknown d0, we interpolate between these values and replace d0

by ~d0T as in (6) (see Giraitis et al. (2006) for a similar solution).

[Table 1 about here]

Remark 9. Under local alternatives, the two components A0d;p and A
0
� in the asymptotic dis-

tribution of the sup-gLMT (�) test capture the contributions of the local shifts of the dynamics

parameters and of the level, respectively.16 It is noteworthy that, while the term A0d;p (�; �;)
is symmetric around the break fraction �0 = 0:5, the term A0�

�
d0; �; �=(�0

p
1� 2d0� (1� d0))

�
happens to be positively (resp. negatively) skewed if d0 > 0 (resp. d0 < 0). Hence, when there

is only a break in (d;�0), the local power of the sup-gLMT (�) test is maximized for �0 = 0:5. In

16Note that the limit term A0d;p is similar to that obtained by Horváth and Shao (1999) in their test for

a break only in d using a LR test from Whittle estimation. Likewise A0� is similar to the limit term derived

by Iacone et al. (2013) for a break only in � in the �rst-di¤erenced version of their model, designed to test

for a break in the linear trend of a I(d) process under any memory using Abadir et al.�s (2007) Extended

Local Whittle estimation. Thus, our result generalizes theirs by allowing for joint breaks in both d and �,

plus in the short-run dynamics.

15



contrast, if there were either only breaks in � or in both (d;�0) and �, then local power would be

maximized for some �0 < 0:5 (resp. �0 > 0:5) if d0 > 0 (resp. d0 < 0).

Theorem 1 also nests the special cases where one exclusively tests for a break in dynamics or

in the level, i.e. only in d and � (so that A0� drops) or only in � (so that A
0
d;p drops), re�ecting

that these two tests are asymptotically independent under local alternatives. However, note that if

only a subset of the parameters breaks, a testing procedure which does not allow for a break in the

other parameters could lead to better power properties in �nite samples. Nonetheless, estimation

of the model under this null could yield misleading conclusions when the tested parameter happens

to be stable while the other parameters are the ones that actually shift. We analyze this last issue

in Subsection 5.2.1 below, where a robusti�ed version of the test to the behaviour of the non-tested

parameters in the DGP is provided.

Lastly, Corollary 1 below provides the asymptotic distribution of the]LMT test when the break

fraction �0 is assumed to be known.

Corollary 1 With known break fraction �0, under Assumptions 1, 2 and 3, and hypothesis H1T (�0) ;

gLMT (�0)
d! �22+p (c (�0)) ;

with non-centrality parameter

c (�0) = !2p (�;)�0 (1� �0) +
�2

�20

L (d0;�0; �0)� L2 (d0; 0; �0)
(1� 2d0) �2 (1� d0)

� cd;� (�0) + c� (�0) ;

where !2p (�;) = (�  0) � (�  0)0 :

As expected, when �0 is known, the asymptotic distribution becomes a chi-square with 2 + p

degrees of freedom, where the non-centrality parameter c (�0) depends on the two drifts under local

alternatives, namely cd;� (�0) and c� (�0). Moreover, as in the case of unknown �0, Corollary 1

nests the cases of testing for a break in a subset of the parameters: (i) if one tests for a break only

in (d;�), the limiting distribution becomes �21+p (cd;� (�0)), where c� drops and (ii) if one tests for

a break only in �; the limiting distribution becomes �21 (c� (�0)), where cd;� drops.

The next corollary shows that the results in Theorem 1 and Corollary 1 on size and local power

under DGP (1) also hold under the DGP-MA discussed in Remark 3.

Corollary 2 The conclusions of Theorem 1 and Corollary 1 also hold for data generated under

the DGP-MA discussed in Remark 3.

Remark 10. As mentioned earlier, Martins and Rodriguez (2014) and Hassler and Meller (2014)

have proposed similar LM test statistics for a break in d in I(d) processes, but under the assumption
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of a known memory parameter (d0) in the �rst subsample. In such an instance, the variance of the

test statistic would be smaller than when d0 is unknown, resulting in a higher local power. Yet,

since the assumption of known d0 is quite restrictive in practice, they suggest some estimators of

the memory parameter. Martins and Rodriguez (2014) plug in a parametric estimator of d to derive

the asymptotic distribution of the corresponding LM test statistic. However, their approximation

may not be accurate enough since it ignores the covariance between the test statistic and the

estimator under the null. Hassler and Meller (2014) plug in a semiparametric estimator for d0 but

without deriving the limiting distribution of their LM test which they note could di¤er from the

corresponding distribution under known d0, due to the lower rate of convergence of their proposed

estimator.

5.2 Consistency of LM tests

In this section we prove the consistency of the LM test for breaks in either all or a subset of the

parameters. In particular, as regards the gLMT test for the null H0 :
�
�0;�

0
0; �0

�
= 0, we consider

the following set of �xed alternative hypotheses:

Hd;�
1 (�0) :

�
�0;�

0
0

�0 6= 0 and �0 = 0,
H�
1 (�0) :

�
�0;�

0
0

�0
= 0 and �0 6= 0;

Hd;�;�
1 (�0) :

�
�0;�

0
0

�0 6= 0 and �0 6= 0:
where the superscripts in Hd;�

1 (�0), H
�
1 (�0) and H

d;�;�
1 (�0) denote, respectively, alternatives with:

(i) only a break in (d;�), (ii) only a break in �, and (iii) joint breaks in (d;�) and �.17 Under the

corresponding alternative hypotheses, the following result holds:

Proposition 1 Under Assumptions 1, 2 and 3, then:

The LM test statistic for a break in all parameters, gLMT (�0) and sup� gLMT (�) ; diverge: (i) at

rate T under either Hd;�;�
1 (�0) or H

d;�
1 (�0), and (ii) at rate T 1�2d0 (resp. T ) under H

�
1 (�0) with

d0 � 0 (resp. d0 < 0).

Remark 11. As anticipated above, it is important to highlight that the use of individual ]LMT

tests for breaks in a subset of the parameters �either (d;�) or ��may lead to spurious rejections

when the non-tested subset happens to be the only one shifting. The next subsection is devoted

to analyze this issue in further detail.

As in Corollary 2, the next corollary shows that the results in Proposition 1 on consistency

under DGP (1) can be extended to DGP-MA.

17To save space we do not consider here alternatives involving breaks only in d or � or joint breaks in

(�;�), whose testing strategy would be similar to the one used for the three cases discussed in this section.
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Corollary 3 The conclusions of Proposition 1 also hold for data generated under the DGP-MA

discussed in Remark 3.

5.2.1 Robusti�ed LM test

Whenever the joint gLMT test rejects the null of parameter stability, one may be interested in

identifying the speci�c source of the break under any of the aforementioned set of �xed alternatives.

To pursue this approach we propose a robusti�ed version of the LM test against potential breaks

in the non-tested parameters, �rst under known break fraction, and next when it is unknown.

(a) Known break fraction

For ease of exposition, besides assuming known �0, we consider the simple case where there

are no short-run dynamics: �0(L) = 1, and �0 = 0. To achieve break-source identi�cation in this

case, it is convenient to derive individual LM tests under the following two simple null hypotheses,

Hd
0 (�0) : �0 = 0;

H�
0 (�0) : �0 = 0;

where, unlike the individual nulls considered earlier, no assumption is explicitly made about the

stability of the other (non-tested) parameter. Then, a sequential procedure can be designed to test

the above simple null hypotheses. The �rst step consists of testing for joint breaks in d and � by

means of the gLMT test de�ned in (3). In case of rejection, the second stage entails testing the

individual null Hd
0 (�0) (resp. H

�
0 (�0)) to check if d (resp. �) is actually breaking, irrespective of

whether the other parameter shifts or not.18 For example, to implement a robusti�ed test of the

null Hd
0 (�0) against the alternative H

d
1 (�0) : �0 6= 0, rather than using the ]LMT test based on the

score in the direction of � with H0-restricted estimates ( ~d0T ; ~�0T ) as in (6), we recommend to use

the following Hd
0 (�0)-restricted estimates

( �d0T ; ��0T ; ��0T ) = arg min
d2D;�;�

TX
t=1

�
�d
t (yt � �� �Rt (�0))

�2
; (15)

where di¤erent levels are allowed in each subsample. Then, the robust individual version of the

LM test for Hd
0 (�0), labeled LM

d
T (�0), is given by

LM
d
T (�0) =

@LT ( ; �0)
@ 

����
 =� T

 
� @2LT ( ; �0)

@ @ 0

����
 =� T

!�1
@LT ( ; �0)

@ 

����
 =� T

;

where � T = (0; ��0T ; �d0T ; ��0T ; ��
2
T )
0 and ��2T = T�1

PT
t=1 �"

2
t uses the H

d
0 (�0)-restricted residuals

�"t = "t
�
� T
�
= �

�d0T
t (yt � ��0T � ��0TRt (�0)). Using a similar reasoning, we can de�ne LM

�
T (�0)

18Notice that, to robustify these individual tests against misleading inference, it is preferable to remain

agnostic about the behaviour of the non-nested parameter.
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to test H�
0 based on the corresponding H�

0 (�0)-restricted estimation, where this time � T =

(�0T ; 0; �d0T ; ��0T ; ��
2
T )
0, as well as to derive robusti�ed LM tests when allowing for short-run dy-

namics captured by an AR(p) process with lag polynomial � (L) :

The following Proposition establishes the asymptotic behaviour of the robusti�ed LM tests

considered above.

Proposition 2 Under Assumptions 1, 2 and 3:

(a) The robusti�ed test statistic LM
d
T (�0) for a break only in the memory, diverges at rate T

under either Hd;�
1 (�0) or Hd

1 (�0). By contrast, it converges to a �21 distribution under

H�
1 (�0), i.e, when only � shifts.

(b) The robusti�ed test statistic LM
�
T (�0) for a break only in the level, diverges: (i) at rate

T 1�2d0 (resp. T ) for 0 < d < 0:5 (resp. �0:5 < d < 0) under H�
1 (�0); (ii) at rate T

1�2d1

(resp. T ) for 0 � d1 < 0:5 (resp. �0:5 < d1 < 0) and H
d;�
1 (�0). By contrast, it converges to

a �21 distribution under H
d
1 (�0), i.e. when only d shifts.

Upon rejection of the joint null of parameter stability in the �rst stage of the sequential testing

procedure, Proposition 2 illustrates why the robust individual tests LM
d
T (�0) and LM

�
T (�0) in the

second stage help identify which speci�c parameter (or parameters) actually break. The insight

is that the individual test of Hd
0 (�0) (resp. H�

0 (�0)) will reject asymptotically this null under

Hd
1 (�0) (resp. H�

1 (�0)) but will only exhibit trivial power under H
�
1 (�0) (resp. Hd

1 (�0)). It

also follows from Propositions 1 and 2 that the rates of divergence of gLMd;�

T and LM
�
T (�0) under

H�
1 (�0) depend on the value of the memory parameter in the second subsample (i.e. d0 if memory

is constant, or d1 if it breaks).

Remark 12. A brief discussion follows on how size is controlled asymptotically in the previous

sequential testing approach. As is well known, Type-I errors for the joint hypothesis pile up in

multiple testing when tests of individual hypotheses are implemented after not rejecting the previ-

ous ones, therefore requiring Bonferroni-type corrections. However, we claim that such corrections

are unnecessary here because the LM
d
T test does control size. In e¤ect, (under H

�
1 ) d would be

wrongly identi�ed as the source of the break in 100�% cases as T ! 1; whereas, since the �rst
stage is asymptotically correct, rejection would also happen asymptotically at most in 100�% cases

under H0 (that is, when none of the alternatives H
�
1 ; H

d
1 or H

d;�
1 hold). Thus, the probability of

wrongly concluding that d is breaking is controlled in both cases (i.e. under H�
1 and under H0)

while, if d truly breaks (under Hd
1 or H

d;�
1 ), this would be con�rmed with probability tending to 1.

(b) Unknown break date
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When �0 is unknown, its value is replaced in the test by the estimate of the break date obtained

from the �rst step, namely, e�T = argmax�2� gLMT (�). The next two propositions (which, to our

knowledge, seem to be new in the literature on break testing), justify this procedure. In particular,

we use a weak convergence condition to ensure that the restricted parameter estimates converge to

an interior value of the parameter space under a �xed alternative (Proposition 3 below) and under

local alternatives (Proposition 4 below). This implies that the break date can be fully pinned down

asymptotically by maximizing the gLMT (�) test statistic, so that �0 becomes identi�able from the

restricted estimates.

Proposition 3 Under Assumptions 1, 2, 3 and
�
~d; ~�0; ~�

�
!p (dA;�

0
A; �A) ; where (dA;�

0
A) 2

Int (D �A) ; Hd;�
1 (�0) ; H

�
1 (�0) or H

d;�;�
1 (�0) ; �0 2 �; then ~�T

p! �0:

Proposition 4 Under Assumptions 1, 2, 3 and the local alternatives

Hd;�;�
1;T;m (�0) :

�
�0;�

0
0; �0

�
= mT

�
�=T 1=2; 0=T 1=2; �=T 1=2�d0

�
where �0 2 �; (�; 0; �) 6= 0 and mT satis�es as T !1

1

mT
+

mT

T 1=2
! 0;

then ~�T
p! �0:

As a result of these two propositions, the conclusions of Proposition 2 also hold for the sup-

version of the LM test.19 In fact, as will be later discussed in Section 7 below, our simulation

results con�rm the rather satisfactory �nite sample performance of the break fraction estimators
~�T = argmax�2� gLMT (�) and ~�T = argmax�2� L̂MW T (�).

6 Asymptotic properties of LMW-type tests

Using estimates ( ~d0T ; ~�0T ; ~�0T ) in place of (d0;�0; �0); we next show that the limiting distribution

of LMW-type test is equivalent to the one of the LM test under a sequence of local alternatives.

Recall from Remark 6 that the insight for this equivalence result is that the �lter used by the

LMW-type test, (1 � ��
t )/�, converges to the �lter used by the LM test, � log�t, when � ! 0

under local alternatives. Yet, as will be shown below, the two �lters could be di¤erent when � does

not converge to zero, namely, under �xed alternatives.

19Note further that Proposition 3 complements the results of Rachinger�s (2017) on consistent estimation

of the break fraction �0 obtained by minimization of the conditional sum of squares (CSS). Indeed, both

approaches provide asymptotically the same information on �0 when the model is known.
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Theorem 2 Under Assumptions 1, 2 and 3 and under the local hypothesis H1T , for unknown

parameters d0;�0 and �0 and for

(a) an unknown break fraction �, the asymptotic behaviour of the LMW-type test sup� L̂MW T (�)

corresponds to the one derived for the sup� gLMT (�) test in Theorem 1:

(b) a known break fraction �0, the asymptotic behaviour of the LMW-type test L̂MW T (�0) corre-

sponds to the one derived for the gLMT (�0) test in Corollary 1:

In addition, we discuss the consistency of the LMW-type test for breaks in the dynamics and/or

� under �xed alternatives, where the following result holds.

Proposition 5 The LMW-type tests for a break in all parameters, L̂MW
d;�;�

T (�0) and sup� L̂MW
d;�;�

T (�) ;

behave like the gLMT tests for joint breaks in Proposition 1:

A robusti�ed version of the LMW test can be obtained in a similar fashion as for the LM test

by regressing the restricted residuals �"t = "t
�
� T
�
= �

�d0T
t (yt � ��0T � ��0TRt (�)) on ~X

(p)
t (�) =

X
(p)
t

�
�; �̂T (�); �̂T (�) ; �d0T ; ��0T ; ��0T

�
, where ( �d0T ; ��0T ; ��0T ) are the restricted estimates in (15)

with � evaluated at ~�T :

Thus, under �xed alternatives, Proposition 5 implies that,the regression-based versions of the

two tests exhibit the same rates of divergence. However, as anticipated above, their drift terms

will be di¤erent, a feature which a¤ects their relative asymptotic power. Our main �nding in this

respect is that the drift term of the LMW-type test is larger than the corresponding drift term

of the LM test. To illustrate this result, let us consider the alternative of only a break in d at a

known fraction �0, with �0(L) = 1 and �0 = 0: Then, it follows that

p lim
T!1

gLM (�)

T
=

1� �0
�0

CLM (d1; dA) ;

p lim
T!1

L̂MW (�)

T
=

1� �0
�0

CLMW (d1; dA) ;

where the drift terms (CLM and CLMW ) in the previous expressions are given by

CLM (d1; dA) =

 
1P
j=1

 
jP

k=1

�(j�k+d1�dA)
k�(j�k+1)

!
�(j+d1�dA)
�(j+1)

!2
��2d;LM
�2

1P
j=1

 
jP

k=1

�(j�k+d1�dA)
k�(j�k+1)

!2 ;

CLMW (d1; dA) =
� (1 + 2 (dA � d1))
�2 (1 + (dA � d1))

� 1;

such that dA and ��2d;LM are the probability limits of the restricted estimate ed0T (obtained from
(6)) and the estimated variance in the gLM test, respectively, under the alternative Hd

1 (�0): For
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the speci�c simpli�ed case considered here, they can be shown to be equal to,

dA = arg min
d2Di

�
�0
� (1� 2 (d0 � d))
�2 (d� d0 + 1)

+ (1� �0)
� (1� 2 (d1 � d))
�2 (d� d1 + 1)

�
; (16)

��2d;LM = �20

�
�0
� (1 + 2 (dA � d0))
�2 (1 + (dA � d0))

+ (1� �0)
� (1 + 2 (dA � d1))
�2 (1 + (dA � d1))

�
;

As illustrated in Figure 1, where �0 = 0:5, d0 = 0, and �0 = 1, it easy to show that the drift

terms above satisfy the following inequality: CLMW (d1; dA) > CLM (d1; dA), with this di¤erence

becoming steeper when d1 < d0 < 0 (see Dolado et al, 2017). Therefore, under Hd
1 (�0); the

LMW-type tests tend to dominate the LM tests in terms of asymptotic power due to their greater

non-centrality parameters.

[Figure 1 about here]

6.1 Model speci�cation for LMW-type test

To determine the value of p in practice, we need to ensure that the proposed model and the

regression underlying the LMW-type test (11) are correctly speci�ed. The key assumption to

check is that the residuals are approximately i.i.d., as speci�ed in Assumption 2. However, our

method for testing residual serial correlation should account for the special features of this arti�cial

regression, namely, that both the dependent variable and the regressors are generated variables,

and that they depend on ~�T :

To address the parameter-estimation e¤ect both in the de�nition of ~"t and ~X
(p)
t

�
~�T

�
and the

computation of the residuals êt = êt

�
~�T

�
= ~"t � �̂0 ~Xt

�
~�T

�
, we propose to apply a Breusch-

Godfrey (BG) test for the null of no serial autocorrelation in the residuals against the alternative

of autocorrelation of order P (see Breusch (1979) and Godfrey (1978)). In our setup, the BG

test consists of an OLS regression of the residuals êt on its �rst P lags, the regressors ~X(p)
t

�
~�T

�
and the residual derivatives with respect to the set of estimated parameters

�
~d0T ; ~�0T ; ~�0T

�
in

the dependent variable ~"t; i.e., ~Z
(p)
t (0), which are similar to ~X(p)

t

�
~�T

�
but without restricting the

estimation to the second part of the sample. Hence, the testing dynamic residual regression

êt = �0 + �1êt�1 + � � �+ �P êt�P + �0� ~X
(p)
t

�
~�T

�
+ �0Z ~Z

(p)
t (0) + errort;

is �tted and the LM test statistic TR2T for the signi�cance of the coe¢ cients of êt�1; : : : ; êt�P ; H0 :

�1 = � � � = �P = 0; is compared to a �
2
P critical value. Here P should be chosen to be larger than p

to be able to identify dynamics not properly described by the speci�ed model. With and without

breaks in the model, ~X(p)
t

�
~�T

�
should not be signi�cant in the residual regression, so dependence
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on ~�T would not a¤ect asymptotic inference. Despite the fact that lag length order selection could

impact the properties of the test under some data con�guration, as will be shown in our Monte

Carlo simulations below, this simple procedure seems to provide good size accuracy under the null

of no breaks and good power when breaks occur in some of the parameters.

6.2 Multiple breaks

An additional advantage of the LMW-type test is that it can be easily extended to allow for the

presence of multiple regimes, therefore allowing for breaks in d;� and � at di¤erent periods of time.

In this fashion, our maintained assumption that breaks are coincidental in time can be relaxed.

We brie�y sketch in the sequel how to implement the tests in this more general setup where, for

notational simplicity, we consider again the case of no short-run dynamics with � (L) = 1.

Denoting the number of regimes by m, let us consider the following DGP for i = 0; : : : ;m� 1,

�dt
t (yt � �t) = "t, t = [�iT ] + 1; : : : ; [�i+1T ];

with

�t =
m�1X
i=0

�iR
(i+1)
t (�)

where R(i+1)t (�) = R
(i+1)
t (�i; �i+1) = 1 ([�iT ] < t � [�i+1T ]) ; �0 = 0; �m = 1; � =(�1; : : : ; �m�1)0

and dt is de�ned similarly. For example, when testing for 0 versus 2 breaks (so that m = 3);

implementation of the LMW-type test relies on the following regression model,

�d0
t (yt � �0) =

 
#1

"
1���1

t

�1

#
�d0
t (yt � �0) + #2�d0

t 1

!
R
(2)
t (�)

+

 
#3

"
1���2

t

�2

#
�d0
t (yt � �0) + #4�d0

t 1

!
R
(3)
t (�) + "t;

where a test of H0 : #1 = #2 = #3 = #4 = 0 corresponds to testing for two breaks in both

parameters, while testing H 0
0 : #1 = #3 = 0 (resp. #2 = #4 = 0) is equivalent to testing for two

breaks only in d (resp. �). As for the non-coincidental breaks, e.g. testing H 0
0 : #1 = #4 = 0 would

correspond to testing for a break in d, followed by a break in �:

Finally, the LMW-type test de�ned in (9) can also be extended to a sequential testing of

multiple breaks, e.g. by testing the null of k breaks (denoted H(k)
0 , with k = 0; 1,..) against the

alternative of k+1 breaks (denoted H(k+1)
1 ), as we carry out in the empirical application reported

in Section 7. In this case, unlike before, we do recommend the use of Bonferroni conservative

critical values because multiple tests are performed in many subsamples to test for a further break.

In particular, if the null H(0)
0 is rejected in favour of H(1)

1 , the sequential testing procedure implies
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that the same test would be applied again in each of the two di¤erent subsamples to identify further

breaks, but this time using �=2 nominal critical values to keep the size of the overall test of H(1)
0

vs. H(2)
1 at the right level �.

Remark 13. To test the origin of breaks in the potentially non-coincidental case, one could apply

the robusti�ed tests discussed in Section 5 at the second stage once the aforementioned sequential

procedure has determined the number of breaks.

7 Finite sample simulations

In this section we report some Monte-Carlo simulation results regarding size and power of the

regression-based LM and LMW-type tests in �nite samples. In some simulations the break fraction

will be assumed to be known while in others it will be taken to be unknown. We consider a wide

range of setups, which are organized in di¤erent simulation blocks as follows.

(I) Size and power of the LM and LMW-type tests (no short-run dynamics)

In the �rst set of simulations we abstract from short-run dynamics (i.e. �0 (L) = 1 and

�0 = 0) and consider only shifts in d and/or � at an unknown break fraction � 2 � = [�; 1 �
�] of the sample, with � = 0:15. The chosen signi�cance level is 0:05 and the sample sizes

are T 2 f200; 500; 1000g regarding size, and T = 200 regarding power. We set an error vari-

ance �20 = 1 and take draws from a N (0; 1) distribution. To compute size, we consider d0 2
f�0:4;�0:3;�0:2;�0:1; 0; 0:1; 0:2; 0:3; 0:4g and �0 = 0 while, to compute power, we consider

�0 = 0:5, d0 2 f�0:2; 0; 0:2g; d1 2 f�0:4;�0:2; 0; 0:2; 0:4g, �0 = 0 and �1 2 f0; 0:25; 0:5g. The
number of simulations is 10; 000.

Table 2 (panels a and b) displays the size of the two tests for joint breaks in d and � at an

unknown break fraction. The main �nding is that both tests exhibit satisfactory size properties

for T = 500 and 1000, though they can be slightly oversized for T = 200. Table 2 (panels c and d)

displays the power results of the two tests for a break in d and/or � at �0 = 0:5. The simulation

results con�rm that there are some power gains from using the L̂MW T tests in �nite samples.20

As can be inspected, power for both tests is increasing in the magnitude of the shifts in d and �.

For example, looking at the second block in panel (d), for �0 = �1 = 0, a shift in d from 0 to 0:2

increases the power of the L̂MW T test by 11:6 pp. (= 18:2� 6:6) whereas, for d0 = d1 = 0; a shift

in � from 0 to 0:25 raises power by 22:7 pp. (= 29:3 � 6:6). The corresponding gains in power
when d shifts from 0 to 0:4 (for �0 = �1 = 0) and when � shifts from 0 to 0:5 (for d0 = d1 = 0) are

20We have checked whether the higher power of the L̂MW -type tests relative to the gLM test could be

due to the di¤erences in their e¤ective sizes but size-corrected power of the former test remains higher,

though to a slightly lesser extent than when the nominal size is used.
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49:6 pp. and 63:0 pp., respectively. Lastly, as expected, the power arising from breaks in � is the

lower the larger d: For instance, using the shift in � from 0 to 0:25 (this time with d0 = d1 = 0:2;

instead of d0 = d1 = 0), only raises the power of the L̂MW T test by 9:9 pp. (= 16:0� 6:1).

[Table 2 about here]

(II) Estimates of the break fraction (no short-run dynamics)

With regard to the estimation of the break fraction when it is considered to be unknown,

Figure 2 shows a second set of simulations about the �nite sample performance of the break-fraction

estimators ~�T = argmax�2� gLMT (�) and ~�T = argmax�2� L̂MW T (�) discussed in Proposition

3 and 4. Their values have been simulated for breaks in d (from 0 to 0:4) and in � (from 0 to 0:5)

at �0 = 0:5, with T 2 f200; 500g. As can be inspected, the distributions of these break-fraction
estimates are well centered around their true value in all these simulations, and their variance

decreases as the sample size increases.21

[Figure 2 about here]

(III) Size and power of the LM and LMW-type tests (known AR(1) short-run

dynamics)

Next, we report a third set of size and power simulation results in Table 3, now allowing for

known short-run dynamics captured by an AR(1) process, with all parameters potentially shifting

at a known fraction �0 = 0:5. As regards size, we consider T 2 f200; 500; 1000g and �0 = 0,

d0 2 f�0:4;�0:2; 0; 0:2; 0:4g, and �0 2 f�0:5; 0:5g while for power we choose, T = 200, d0 2
f�0:2; 0; 0:2g and d1 2 f�0:4;�0:2; 0; 0:2; 0:4g, �1 2 f0; 0:5g and �1 2 f�0 � 0:3; �0; �0 + 0:3g.
Finite sample size (panels a and b) is relatively well controlled for both tests, converging to 5

percent as the sample size increases. As regards power (panels c and d), the advantage of using the

L̂MW T test, instead of the gLMT test, becomes much more substantial than in the previous sets

of simulations, reaching a 40:4 pp. (= 94:6� 54:2) power gain under joint shifts in d (from 0:2 to

0:4), � (from 0 to 0:5), and � (from 0:5 to 0:8). As pointed out in Remark 6, the insight is that,

unlike the gLMT test, the L̂MW T test is able to yield i.i.d. residuals in its underlying regression

when substantial breaks in the short-run dynamics are present (i.e. under �xed alternatives), and

thus its use should be strongly recommended in those cases. In addition, panel (e), illustrates that

the L̂MW T test also has power against breaks under the alternative DGP-MA.22 Thus, the choice

of DGP (1) does not seem to play a crucial role in the obtained results.

21Unreported simulations show a comparable performance of the break fraction estimator for the alter-

native DGP-MA.
22Unreported simulations con�rm these �ndings for the gLMT test as well.
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[Table 3 about here]

(IV) Size and power of the LMW-type test (unknown AR(p) short-run dynamics)

In Table 4 we provide a fourth set of simulations similar to those presented in Block (III), but

this time considering an unknown lag order p of the autoregressive short-run dynamics. Due to

its higher power, results are only reported for the L̂MW T test here and in the next two sets of

simulations. As discussed in Section 6.1, in this case the BG testing procedure is implemented

to check for lack of autocorrelation in the residuals estimated under the alternative. Thus, the

lag order p of the ARFI(p; d) process should be augmented until the null of i.i.d. residuals is not

rejected. The parameter con�guration for this simulation exercise corresponds to those in Table 3.

The true lag order is set to p = 1, and we allow for an ARFI(p; d) structure with p � 3, such that
P = 5 lags of the residuals are considered in the BG testing procedure. Besides the size (panel a)

and power (panel c) properties of the chosen test, we also report the proportion of the simulations

in which the BG testing procedure selects the true value of p (panel b). As can be observed, while

size and power are comparable to those reported for the L̂MW T test in the simulations above, the

proposed BG testing procedure correctly selects the true value of p in most instances, especially

when T = 500 and 1000.23

[Table 4 about here]

Related to the previous set of simulations, we next consider breaks in the dynamics and levels for

an ARFI(3; d) process with known p. The autoregressive coe¢ cients in the AR(3) lag polynomial�
1� �01L� �02L2 � �03L3

�
are taken to be �01 2 f�0:5; 0:5g, �02 = 0:5�01 and �03 = 0:25�01.

As for power, we consider two alternative breaks in the AR parameter �01, which takes values

�11 2 f�0:5;�0:2g in the �rst case, and �11 2 f0:2; 0:5g in the second case. In both instances, the
remaining parameters of the AR(3) process are set such that �12 = 0:5�11 and �13 = 0:25�11. The

results of this simulation, reported in Table 5, support the previous �ndings about the fairly good

size control and the satisfactory power of the L̂MW T test.

[Table 5 about here]

(V) Size and power of the LMW-type test (ARMA short-run dynamics)

Whereas the simulation results in Block (IV) have shown that the proposed BG testing proce-

dure can deal with ARFI(p; d) of any �nite order p, it is interesting to check whether this procedure

23Notice, however, that the lag length selection could impact the properties of the test under some data

con�gurations, e.g. when the errors have an MA root close to 1 (Ng and Perron, (2001)).
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behaves properly when the short run dynamics follow an ARMA(p; q) process instead of an AR(p)

process. Our conjecture is that the BG procedure should choose a su¢ ciently long autoregressive

lag order in this case to render approximately uncorrelated residuals. To evaluate the performance

of the L̂MW T test in such a case, the following ARFIMA(1; d; 1) process is considered as the DGP

of this simulation exercise

(1� �tL)�dt
t (yt � �t) = (1� �0L) "t; t = 1; 2; : : : ;

with �0 = 0:2 and �0 2 f0:3; 0:5; 0:8g for size, and �0 = 0:5 and �1 2 f0:2; 0:5; 0:8g for power.24

The results of this �fth set of simulations of the L̂MW T test of joint breaks in d, �, and � are

displayed in Table 6. As can be inspected, the size and power properties of the L̂MW T test

are very close to those presented in Table 3 above, implying that the BG testing procedure fares

well in correcting for this type of autocorrelation by selecting a su¢ ciently long order p in the

implementation of the test.

[Table 6 about here]

(VI) Size and power of the LM and LMW-type tests with heavy-tailed innovations

In all the previous simulations, innovations have been assumed to be Gaussian. Yet, given that

the distribution of �nancial data is often heavy tailed, we report next a sixth set of size and power

simulations with the same DGP used in Table 3 above for both tests, but this time with innovations

being drawn from a t(6) distribution, rather than from a N(0; 1). Comparing the results in Table 7

with the previous results, we conclude that the size and power properties of both tests remain

similar under this much heavier-tailed distribution of innovations.

[Table 7 about here]

(VII) Size and power of the LMW-type tests with multiple breaks

We �nally report here some simulation results of the proposed sequential testing procedure for

multiple breaks based on L̂MW T . In particular, we assume breaks at �0 = 1=3 and �1 = 2=3,

splitting the series into three regimes. The sample sizes are T = 200; 500. For simplicity, we

abstract from short-run dynamics and only consider breaks in d and �. The setup is thus the same

as in Table 2, but with two breaks instead of a single break. Since we �rst test for 0 vs 1 breaks in

the sequential procedure, the size of the test is the one reported in Table 2. Thus, Table 8 reports

power. In particular, we compute the proportion of times that the test locates 0, 1, 2 (the correct

number of breaks) and 3 breaks. In addition, whenever 2 breaks are detected, we report the mean

24Results for �0 = �0:2 are provided in the online appendix. They are fairly similar.
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and variance of the estimated break fractions. Three di¤erent break scenarios are considered: (a)

breaks in d from 0 to 0:4 and then back to 0, plus in � from 0 to 0:5 and then back to 0; (b) breaks

in d from �0:4 to 0 and then up to 0:4, and in � from 0 to 0:5 and then up to 1; and (c) breaks in

d from 0 to 0:2 and then down to �0:2, plus the same breaks in � as in (b). The main takeaways
from Table 8 are that: (i) as expected, acceptable power performance requires sizeable breaks as

well as large sample sizes (T = 500), in line with the consistency of the sequential procedure; and

(ii) the consistency of the break fraction estimates holds in all cases, as re�ected by the means

becoming closer to 1=3 and 2=3 with decreasing standard deviations.

[Table 8 about here]

8 Empirical application

In this section we apply the proposed testing methodology to the analysis of the forward discount in

exchange rate markets. As is well known, rational expectations and risk neutrality, combined with

covered and uncovered interest rate parity, lead to the so-called forward exchange rate unbiasedness

hypothesis (FRUH) whereby the (logged) forward rate, ft; is an unbiased predictor of the future

(logged) spot exchange rate, st+1, i.e. Et (st+1) = ft. In particular, testing FRUH corresponds to

a test of the null H0 : �0 = 0; �1 = 1 in the following regression model

�st+1 = �0 + �1 (ft � st) + "t+1;

where (ft � st) is the forward discount. This null has often been rejected in empirical applications
where typically the OLS point estimate of �1 is small or even negative (see, e.g., Engel, 1996, for an

overview of this literature), leading to what has been coined the forward discount anomaly. It has

been argued that this �nding may result from the unbalanced nature of the previous regression.

In e¤ect, while the dependent variable �st+1 is conventionally found to be I(0), there is a large

body of literature documenting that (ft � st) follows a I(d) process with d generally lying in the
non-stationary range, 0:5 < d < 1 (see, e.g., Baillie and Bollerslev (1994), and Maynard and

Phillips, (2001)). However, Choi and Zivot (2007) have shown that estimates of d are likely to

be upward biased when structural instabilities in the level of (ft � st) are ignored. Using the
residuals of the forward discount monthly series for �ve G7 countries, Choi and Zivot (2007) �rst

adjust the level of these series for several structural breaks detected by means of Bai and Perron�s

(1998) methodology. Next, they estimate d non-parametrically (using Kim and Phillips�s (2000)

log-periodogram regression approach) from these break-adjusted series. Their evidence points out

that (ft � st) is subject to several breaks and that accounting for these breaks leads to much lower
estimates of d than those previously found in the literature, with 0 < d < 0:5.
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Following this controversy, we provide here a brief empirical application of our proposed tests

using the forward discount data for �ve G7 countries examined by Choi and Zivot (2007). Their

dataset includes monthly forward discount rates for the period 1976:1-1996:1 corresponding to the

exchange rates in terms of US dollars for Canada, Germany, France, Italy, and U.K., where ft is

de�ned as the (logged) 30-day forward rate.

Figure 3 displays the �ve time series at hand. Choi and Zivot (2007) �nd �ve breaks in the

level of (ft � st) for Germany and U.K., four breaks for France and Italy, and three breaks for
Canada. The dates of all these breaks are displayed using dashed vertical lines in Figure 3. As

can be seen, about half of them take place before 1981, while most of the remaining ones occur

between the late 1980s and early 1990s.

[Figure 3 about here]

However, Choi and Zivot (2007) also report that reversing the testing procedure (i.e., �rst d

is estimated from the time series of (ft � st) without allowing for level shifts, and then Bai and

Perron�s (1998) procedure is used to detect multiple breaks in the �ltered series �d
t (ft� st)), leads

to a much smaller number of breaks (none for Germany and France, one for Italy, and three for

Canada and U.K.). These contrasting �ndings possibly re�ect the shortcomings of using a two-step

testing procedure instead of a single-stage approach, as the one proposed here. Moreover, given

that the level and the dynamics could shift simultaneously (an event which is not considered by

these authors), both sources of breaks could easily get confused. Our single-step testing approach

is therefore better suited to address this problem since it yields more reliable estimates both of

the number of breaks and their origin. Note that, despite the fact that �nancial series at daily

frequencies exhibit pronounced volatility clustering, there are little ARCH e¤ects in the monthly

forward discount rates and persistence in such series is well captured by an I(d) process (see e.g.

Baillie and Bollerslev (1989)), making our testing procedures suitable for their analysis. At any

rate, since our tests require i.i.d. innovations, we correct for any potential heteroskedasticity left

by standardizing the variance of the residuals in the regressions performed in each of the di¤erent

regimes.

To check this possibility of breaks in levels and dynamics, we consider an ARFI(p; d)model with

drift and an AR process of unknown order p for each of the �ve series, allowing for simultaneous

breaks in all three parameters (d;�; �). Given its better power performance, we apply our sup-

L̂MW T test statistic, where the lag order p is selected according to the proposed BG testing

procedure. To allow for multiple breaks (see the discussion in Subsection 6.2), we test sequentially

(0 vs. 1 break and, upon rejection, 1 vs. 2, and so forth) and use the critical values reported in

Table 1 to determine the number of breaks together with the break fractions. Table 9 (panel a) and
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Figure 3 display the break dates as the vertical solid lines. In addition, horizontal solid lines depict

the estimated value of d in each of the relevant subsamples where breaks have been identi�ed.

[Table 9 about here]

At the 5 % level, the sup-L̂MW T test detects only one statistically signi�cant break for Canada

and Germany, two for France and Italy and three for the U.K., although there is some evidence

in favour of a second break for both Canada and Germany when using a 10% signi�cance level.

Thus, the number of breaks found with our single-step testing procedure (9 to 11) is in between

the two contrasting numbers (21 and 7) reported by Choi and Zivot (2007) in their original and

reversed two-stage testing approach. As for the lag orders in the AR(p) process, the BG testing

procedure selects p = 1 for Germany and Italy, p = 2 for U.K., and p = 3 for Canada and France.

When using the Bonferroni correction in the sequential procedure, as suggested in Subsection 6.2,

all the previous breaks remain statistically signi�cant but this time only at the 10% level.

In general, the breaking dates estimates gather around the second half of the 1980s and early

1990s, the latter possibly as a result of the collapse of the ERM in 1992. Our results agree with

Choi and Zivot�s (2007) in that we �nd a break in the early and late 1980s for U.K. and in the

early 1990s for Canada, Germany, and the U.K. However, with the exception of the U.K. in 1981,

their earlier breaks turn out to be statistically insigni�cant according to our single-step testing

procedure.

In order to provide further comparisons with Choi and Zivot (2007)��ndings, we also apply the

robusti�ed LMW T test discussed in Subsection 5.2 to identify which speci�c parameters shift at

each of the previously identi�ed break points (see Remark 12 above for a justi�cation of why this

sequential approach does not involve a multiple testing size problem). Table 9 (panel b) presents

the results obtained from applying this test to detect breaks in the dynamics as a whole (d, �)

and in the level �. As can be inspected, in line with these authors, we �nd that all detected

breaks involve shifts in the levels for the speci�c break dates identi�ed here. However, a majority

of them (the exception are the only break in Germany and the �rst break in the U.K.) also involve

parameter shifts in either the short-run dynamics or in the long memory parameter. For example,

a comparison of the estimates of d reported in Figure 3 with the test outcomes in Table 9 (panel

b) shows that, on top of �; both d and � shift after the 1987(12) break in Italy, whereas d remains

stable but � shifts after the second break in 1994(2). Moreover, unlike these authors, we �nd

instances (e.g. France and the second break in the U.K.) where d increases, even after allowing

for breaks in � and �. Therefore, it look like many of the breaks interpreted by Choi and Zivot

(2007) as being exclusively due to shifts in the level of forward discount rates also involve shifts in

the memory and short-run dynamics, and that these novel �ndings can only be uncovered by our

proposed testing approach involving joint parameter breaks.
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9 Conclusions

Our motivation for this paper is that the joint modeling of breaks in the (memory and short-run)

dynamics and the level of fractionally integrated stochastic processes is a relevant issue to analyze

on which research has been limited so far. By considering breaks in all parameters simultaneously,

potential confounding problems about the sources of shifts in the persistence of a time-series process

can be avoided. Our contribution here is to extend the well-known LM test for breaks only in the

memory parameter of an I(d) process to further account for breaks in the level as well as in the

short-run dynamics. As a by-product of our analysis, we derive: (i) a novel regression-based LM

test cum Wald interpretation, labeled LMW-type test, for ARFI(d; p) processes with drift that also

accounts for all these shifts; (ii) individual tests for the stability of a given parameter which are

robust to the behaviour of the non-tested parameters, and (iii) consistent estimates of the break

dates.

The proposed tests share several nice features. While LM tests are computationally attractive

by only requiring estimation under the null, LMW-type tests can exploit further information about

the alternative, potentially leading to higher power without increasing computational complexity.

In addition, in contrast to LM tests, LMW-type tests allow for a consistent speci�cation of the

short-run dynamics, as long as these are restricted to AR(p) processes, although in simulations we

show that they can also accommodate some ARMA processes and innovations with heavy-tailed

distributions. Our Monte-Carlo simulations, based on analytical results, show in particular that

LMW-type tests for joint breaks can yield substantial power gains relative to LM tests in several

instances and are robust to di¤erent speci�cations of the DGP. Finally, our empirical application

on potential breaks in forward discount rates for several G7 countries provides new �ndings on

the origin of these breaks (in both components of the dynamics, as well as in levels), which have

been subject to considerable attention in the literature but without considering shifts in all those

parameters at the same time.
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Table 1: Critical Values of LM tests for breaks in (d; �) or in (d;�; �) for an
unknown break fraction �.

a) Critical Values of LM tests for breaks in (d; �) ; p = 0:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 11.3 11.5 11.5 11.6 11.9 12.3 12.9 14.0 15.9 18.4 20.6

0:15 10.9 10.9 11.0 11.2 11.4 11.8 12.4 13.5 15.4 18.0 20.2

0:2 10.5 10.5 10.6 10.7 11.0 11.3 12.0 13.1 14.9 17.5 19.8

b) Critical Values of LM tests for breaks in (d;�; �) ; p = 1:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 14.2 14.2 14.2 14.3 14.5 14.7 15.2 16.2 17.8 20.2 22.4

0:15 13.6 13.6 13.7 13.8 14.0 14.2 14.7 15.6 17.3 19.7 21.9

0:2 13.1 13.2 13.2 13.3 13.5 13.7 14.2 15.2 16.8 19.2 21.5

c) Critical Values of LM tests for breaks in (d;�; �), p = 2:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 16.5 16.5 16.6 16.7 16.7 16.9 17.4 18.1 19.7 21.9 24.1

0:15 15.9 16.0 16.0 16.1 16.2 16.4 16.8 17.6 19.1 21.4 23.7

0:2 15.4 15.4 15.4 15.6 15.7 15.9 16.3 17.1 18.7 20.9 23.2

d) Critical Values of LM tests for breaks in (d;�; �), p = 3:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 18.6 18.7 17.7 18.8 18.8 18.9 19.4 20.0 21.5 23.6 25.7

0:15 18.0 18.1 18.1 18.1 18.3 18.4 18.8 19.4 20.8 23.1 25.3

0:2 17.5 17.5 17.6 17.7 17.7 17.9 18.2 18.9 20.3 22.6 24.9

e) Critical Values of LM-tests for breaks in (d;�; �), p = 4:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 20.6 20.6 20.7 20.7 20.8 20.9 21.3 21.9 23.2 25.2 27.4

0:15 19.8 20.0 20.0 20.1 20.2 20.3 20.6 21.3 22.6 24.8 26.9

0:2 19.5 19.5 19.5 19.6 19.6 19.8 20.1 20.7 22.1 24.2 26.5

f) Critical Values of LM-tests for breaks in (d;�; �), p = 5:

� n d0 -0.49 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.49

0:1 22.5 22.5 22.5 22.6 22.7 22.7 23.1 23.7 24.9 26.9 29.0

0:15 21.8 21.9 21.9 22.0 22.0 22.1 22.4 23.0 24.2 26.4 28.5

0:2 21.3 21.3 21.3 21.4 21.4 21.6 21.9 22.4 23.7 25.8 28.1

Note: Unknown break fraction � 2 [�; 1� �]. 5% Signi�cance level.

Based on 10,000 grid points for the break fraction and 100,000 simulations.
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Table 2: Simulated size and power of the LM and LMW-type tests for a joint
break in long memory and level (unknown break fraction)

a) gLM test: Size

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 6.8 6.6 6.5 6.6 6.4 6.1 6.0 5.2 4.8

500 6.0 6.7 6.4 6.4 6.0 5.9 5.7 6.0 5.7

1000 5.6 6.5 6.2 5.8 5.4 5.2 5.1 5.6 4.9

b) L̂MW -type test: Size

T n d0 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

200 7.4 7.6 6.7 7.4 6.6 6.2 6.1 4.6 5.3

500 6.6 6.9 6.3 6.3 6.9 6.6 6.0 4.2 4.4

1000 5.8 6.6 6.8 6.2 6.0 5.6 5.0 4.7 4.2

c) gLM test: Power (T = 200)

d0 -0.2 0 0.2

�1 n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0 26.6 6.5 17.8 58.5 74.7 27.0 6.4 14.7 53.4 71.7 22.0 6.0 13.6

0.25 94.7 71.3 50.8 67.5 89.4 57.5 24.2 25.2 55.9 76.3 30.5 10.2 14.8

0.5 100 99.6 92.8 86.0 99.4 93.2 65.8 45.0 62.6 86.5 54.0 21.3 20.1

d) L̂MW -type test: Power (T = 200)

d0 -0.2 0 0.2

�1 n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0 29.9 6.7 21.1 63.9 75.3 28.0 6.6 18.2 56.2 73.4 23.1 6.1 16.0

0.25 95.9 75.7 58.5 73.9 94.3 63.9 29.3 28.7 61.0 80.1 35.1 16.2 19.7

0.5 100 99.8 93.9 87.7 99.4 94.8 69.6 49.0 65.7 93.9 58.1 26.2 27.3

Note: Rejection probabilities of 5% test for joint break in d and �; � = 0:15; �0 = 0:5; �0 = 0; �
2
0 = 1:

Figures in bold characters correspond to simulated sizes.
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Table 3: Simulated size and power of the LM and LMW-type tests for a joint
break in long memory, level and AR short-run dynamics of known order
a) gLM test: Size

�0 -0.5 0.5
T n d0 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4
200 6.5 6.6 6.3 6.5 4.1 4.4 4.9 4.7
500 6.1 5.8 5.9 5.4 4.9 5.4 5.4 4.9
1000 5.7 5.5 5.7 5.0 5.0 5.2 5.3 5.2

b) L̂MW - type test: Size
�0 -0.5 0.5
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4
7.1 6.6 6.1 6.0 6.2 5.8 5.7 5.8
5.8 5.5 6.2 5.7 6.5 6.5 6.4 6.1
5.8 5.8 5.5 5.1 5.7 5.3 5.3 5.5

c) gLM test: Power (T = 200)
d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4
-0.8 43.8 7.8 13.4 58.5 86.9 41.1 7.7 15.1 60.8 85.7 37.5 7.7 15.1

0 -0.5 -0.5 33.7 6.5 27.8 77.2 81.2 31.5 6.6 27.9 78.8 80.3 27.1 6.3 28.6
-0.2 12.6 15.1 58.8 95.3 50.3 12.3 15.0 58.9 95.7 50.7 12.2 14.4 61.4
0.2 85.8 40.2 8.6 11.3 97.7 83.1 38.5 9.4 13.1 97.3 82.8 37.7 7.4

0 0.5 0.5 20.5 4.1 15.2 57.9 61.5 18.9 4.4 17.1 60.5 64.0 18.2 4.9 18.2
0.8 5.3 29.1 69.6 91.1 9.4 6.4 30.9 69.1 81.1 10.4 7.4 31.0 53.8
-0.8 100 100 100 99.2 99.8 100 99.3 90.9 84.2 96.7 91.8 66.7 47.5

0.5 -0.5 -0.5 100 100 100 99.1 100 100 99 88.2 90.4 97.3 88.0 58.6 51.6
-0.2 100 100 100 99.5 99.9 99.4 97.1 90.9 97.2 91.7 73.2 58.5 75.2
0.2 99.4 93 55.8 31.2 98.4 93.7 66.1 21.2 17.3 98.2 86.6 46.4 12.4

0.5 0.5 0.5 80.8 51.7 43.1 67.2 80.5 46.4 14.9 24.8 61.9 69.3 25.3 7.5 19.6
0.8 37.6 51.5 73.2 92.4 24.9 15.9 34.6 71.2 81.4 13.2 8.2 33.5 54.2

d) L̂MW -type test: Power (T = 200)
d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4
-0.8 91.9 62.8 50.1 71.5 99.8 91.0 64.0 51.0 73.4 99.8 90.8 62.8 51.6

0 -0.5 -0.5 34.9 7.1 27.4 76.7 83.6 31.5 6.6 27.0 78.3 82.3 29.1 6.1 28.8
-0.2 32.8 45.9 85.5 99.2 57.3 29.5 48.2 86.6 99.2 58.4 28.7 47.7 85.9
0.2 93.6 51.0 13.8 22.0 99.8 92.5 44.8 13.4 23.0 99.6 90.1 42.9 12.5

0 0.5 0.5 34.3 6.2 22.3 74.0 80.4 29.0 5.8 23.1 75.0 81.8 25.7 5.7 24.6
0.8 11.3 54.3 92.8 99.8 12.0 12.3 53.9 93.6 99.7 12.7 12.4 58.1 94.3
-0.8 100 100 100 99.2 100 100 99.9 96.7 88.8 99.9 99.6 92.3 72.6

0.5 -0.5 -0.5 100 100 100 99 100 100 98.5 86.9 90.8 97.9 87.3 55.9 50.6
-0.2 100 100 100 100 99.9 99.6 98.9 97.8 99.6 92.7 83.2 78.4 92.1
0.2 99.5 96.5 70.4 49.6 99.6 96.4 74.4 32.4 30.7 99.8 92.6 56.6 18.9

0.5 0.5 0.5 90 67.9 58.2 83.6 87.3 58.8 23.5 34 78.5 83.6 34.8 10.7 27.9
0.8 58.7 74.1 95.2 99.9 32.9 27.9 59.4 95.1 99.7 18.0 17.2 61.3 94.6

e) L̂MW -type test: Power under DGP-MA (T = 200)
d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4
-0.8 89.5 63.3 49.9 71.3 99.3 90.6 62.3 51.5 73.7 99.5 91.0 63.2 52.7

0 -0.5 -0.5 26.6 7.1 25.2 78.3 77.8 27.5 6.6 27.0 80.4 79.8 28.8 6.1 29.9
-0.2 28.1 46.3 86.7 99.5 48.2 27.7 47.0 86.7 99.5 51.5 28.6 46.7 88.2
0.2 91.6 49.7 14.1 23.3 99.6 90.3 45.4 12.2 25.3 99.6 90.6 46.2 12.3

0 0.5 0.5 27.0 6.2 23.3 75.5 75.2 26.3 5.8 23.4 81.3 78.2 28.0 5.7 29.4
0.8 12.1 52.2 94.4 99.9 8.9 12.0 54.9 96.1 99.9 10.6 12.7 62.1 97.8
-0.8 100 100 100 99.4 100 100 99.9 96.6 87.9 100 99.4 92.1 75.7

0.5 -0.5 -0.5 100 100 100 99.1 100 99.9 98.2 87.2 89.4 99.1 88.1 57.0 51.8
-0.2 100 100 100 99.9 100 99.9 98.7 97.6 99.4 95.2 82.8 78.5 91.3
0.2 100 96.6 69.8 49.5 100 97.8 75.3 32.4 34.5 99.8 93.9 56.2 18.2

0.5 0.5 0.5 92.6 67.5 59.5 82.7 92.2 57.9 24.6 35.0 82.1 83.3 37.1 10.8 33.3
0.8 59.5 73.2 96.1 99.9 33.1 26.3 62.3 96.0 100 18.8 18.7 65.3 98.1

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

Figures in bold characters correspond to simulated sizes.38



Table 4: Simulated size and power of the LMW-type test for a joint break in
memory, level and AR short-run dynamics of unknown order.

a) L̂MW - type test: Size

�0 -0.5 0.5

T n d0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

200 7.5 7.3 7.0 6.8 7.0 7.2 6.9 7.2 7.0 6.1

500 6.7 6.7 6.7 6.4 6.2 6.6 6.4 6.6 5.9 5.6

1000 6.1 5.5 5.7 5.6 5.7 6.2 5.7 5.5 4.8 5.1

b) Correct lag order selected by BG procedure under H0
�0 -0.5 0.5

T n d0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

200 75.0 89.4 91.3 91.3 91.7 64.6 65.3 65.9 75.7 87.6

500 92.7 93.1 92.9 93.0 93.6 88.6 91.0 90.5 90.7 92.1

1000 93.5 93.2 93.1 93.3 93.6 92.0 92.5 92.9 93.0 93.4

Note: Proportion (in %) of cases where the BG correctly selects the correct AR(p) structure

c) L̂MW - type test: Power (T = 200)

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

-0.8 92.0 65.0 50.6 72.0 99.6 91.6 64.6 52.4 72.0 99.7 91.4 62.5 52.9

0 -0.5 -0.5 35.1 7.3 27.8 78.3 84.2 33.5 7.0 27.4 79.4 84.7 31.5 6.8 29.9

-0.2 33.1 50.2 87.9 99.5 62.4 33.0 49.7 88.2 99.4 60.3 30.7 49.4 88.2

0.2 87.9 41.6 10.5 14.2 99.5 88.4 37.7 10.0 16.1 99.6 87.5 41.0 11.3

0 0.5 0.5 27.7 6.9 19.5 68.3 75.6 24.8 7.2 22.4 71.9 78.4 25.5 7.0 25.2

0.8 10.1 42.6 90.8 99.7 11.3 10.8 51.9 93.4 99.8 10.9 12.1 55.0 93.6

-0.8 100 100 100 99.4 100 100 99.9 96.8 89.3 99.9 99.5 92.4 75.4

0.5 -0.5 -0.5 100 100 99.8 99.2 100 99.9 97.5 87.0 89.8 97.2 88.2 59.6 53.0

-0.2 100 100 100 99.8 99.8 99.6 98.7 98.1 99.8 93.2 84.4 80.7 93.2

0.2 99.0 91.7 58.0 35.0 98.8 95.0 64.2 25.3 22.3 99.5 91.0 47.8 15.9

0.5 0.5 0.5 80.3 55.9 47.7 73.4 82.6 51.6 22.3 32.6 76.1 80.4 33.4 10.7 27.4

0.8 40.1 60.4 92.6 99.7 28.4 21.9 57.0 93.5 99.8 16.6 16.5 56.8 94.9

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0; �
2
0 = 1:

Figures in bold characters correspond to simulated sizes.
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Table 5: Simulated size and power of the LMW-type test for a joint break in
memory, level and AR(3) short-run dynamics

a) L̂MW - type test: Size

�00 -0.5 0.5

T n d0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

200 7.1 6.9 7.1 7.4 7.3 4.7 5.3 6.1 5.5 5.6

500 6.7 6.7 6.9 5.9 6.1 4.4 4.0 4.9 5.0 5.1

1000 5.9 6.4 5.7 5.7 5.8 4.1 4.1 4.3 5.0 5.1

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

b) L̂MW - type test: Power (T = 200)

d0 -0.2 0 0.2

�1 �00 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0 -0.5 -0.5 27.2 6.9 21.6 70.5 77.0 27.8 7.1 24.2 72.0 79.0 26.5 7.4 23.5

-0.2 14.7 33.7 80.4 99.0. 35.8 16.4 36.4 81.4 98.8 35.4 15.6 34.5 81.5

0 0.2 97.6 73.2 25.9 12.0 100 97.5 72.8 25.2 11.5 100 97.5 73.6 26.7

0.5 0.5 20.9 5.3 17.2 61.9 72.4 22.1 6.1 18.1 65.8 72.9 21.6 5.5 18.6

0.5 -0.5 -0.5 100 100 99.9 99.0 99.9 99.7 96.5 86.5 87.2 96.9 86.5 58.7 51.5

-0.2 100 100 99.9 99.9 99.2 98.3 96.8 96.3 99.5 85.2 74.1 70.7 88.1

0.5 0.2 95.8 76.5 33.6 16.7 99.7 97.6 74.2 29.5 13.7 99.9 97.4 74.0 27.4

0.5 0.5 27.2 7.8 19.5 64.3 74.5 24.5 6.3 19.5 67.4 74.0 25.3 7.8 19.8

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �
2
0 = 1:

�00 = �0:5 and �10 2 f�0:5;�0:2g, and �00 = 0:5 and �10 2 f0:2; 0:5g respectively. �i1 = 0:5�i0 and
�i2 = 0:25�i0; i = 0; 1: Figures in bold characters correspond to simulated sizes.
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Table 6: Simulated size and power of the LMW-type test for a joint break in long
memory, level and ARFIMA(1,d,1) short-run dynamics
a) L̂MW -type test: Size for ARMA(1,1) innovations

�0 0.3 0.5 0.8

T n d0 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

200 8.5 7.3 7.0 7.1 5.9 6.8 7.4 6.8 6.7 4.9 5.9 5.6 4.9 4.3 5.1

500 7.3 7.0 6.7 6.8 6.3 6.7 7.6 7.3 6.7 5.3 7.9 7.5 6.1 5.8 4.9

1000 6.4 6.2 6.2 5.7 5.5 5.7 6.5 6.3 6.4 5.6 6.0 5.7 5.3 5.3 5.0

b) L̂MW - type test: Power for ARMA(1,1) innovations (T = 200)

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0.2 86.3 37.5 10.6 16.4 99.5 85.7 37.4 11.0 17.5 99.7 85.5 36.7 10.6

0 0.5 0.5 26.0 7.4 22.7 68.5 76.2 25.3 6.8 21.2 68.7 75.6 23.8 6.7 21.6

0.8 12.9 46.1 90.2 99.6 10.8 13.9 48.3 90.8 99.7 10.1 11.5 48.9 90.1

0.2 96.9 80.6 45.3 33.7 98.6 91.3 55.1 20.4 24.6 99.4 88.3 44.4 15.2

0.5 0.5 0.5 66.4 36.6 42.6 73.3 78.2 39.6 16.7 28.3 69.9 76.6 26.3 9.9 22.8

0.8 35.2 61.1 92.7 99.7 22.3 20.1 54.6 91.3 99.6 13.3 15.2 53.4 91.8

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0, �0 = 0:2;

�20 = 1: Figures in bold characters correspond to simulated sizes.

Figure 1: Drift of the tests for a break in long memory parameter
Drift terms of the LM and LMW-type tests as a function of the break magnitude d1�d0.gLM test (dashed line) and L̂MW -type test (solid line) (�0= 0:5; d0= 0):
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Table 7: Simulated size and power of the LM and LMW-type tests for joint breaks
in memory, level and AR component with t(6) innovations.
a) gLM test: Size

�0 -0.5 0.5

T n d0 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

200 6.9 6.6 6.8 5.9 4.1 4.4 4.2 4.3

500 6.0 6.1 5.8 5.7 5.1 5.1 4.9 5.0

1000 5.5 5.8 5.5 5.5 4.9 5.3 5.0 4.7

b) L̂MW -type test: Size

�0 -0.5 0.5

-0.2 0 0.2 0.4 -0.2 0 0.2 0.4

6.8 6.5 6.2 6.2 6.6 6.2 5.9 5.5

6.0 5.9 5.6 5.4 6.4 6.3 5.6 5.4

5.3 5.7 5.4 5.5 5.8 5.9 5.4 5.3

c) gLM test: Power (T = 200)

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

-0.8 42.2 8.0 13.8 57.8 86.9 40.1 7.2 15.1 59.1 87.0 38.1 6.4 15.4

0 -0.5 -0.5 31.5 6.9 24.7 77.5 80.9 30.5 6.6 27.2 78.3 81.6 27.9 6.8 28.8

-0.2 12.0 13.6 58.7 95.1 51.0 11.7 14.2 61.2 95.7 50.3 11.1 14.8 61.4

0.2 86.2 41.3 8.5 10.4 97.7 83.0 38.4 8.8 11.7 97.2 81.6 37.1 8.9

0 0.5 0.5 19.3 4.1 15.7 57.4 61.1 19.2 4.4 16.9 59.6 60.9 18.1 4.2 17.6

0.8 5.8 27.8 69.7 92.4 9.2 6.1 28.8 70.2 78.4 9.7 6.2 29.9 53.5

-0.8 100 100 99.9 97.3 99.4 99.4 96.2 80.2 78.0 94.6 84.6 51.2 37.5

0.5 -0.5 -0.5 100 100 99.7 97.4 99.4 99.2 93.7 78.6 86.4 94.4 77.7 43.7 45.7

-0.2 100 100 99.6 99.0 99.0 97.1 89.8 85.9 96.9 84.7 59.6 45.1 69.7

0.2 98.1 85.8 42.6 25.4 98.5 92.1 59.0 16.9 15.2 97.8 84.9 41.4 10.3

0.5 0.5 0.5 70.3 37.8 36.1 63.6 76.3 37.1 11.9 21.9 61.0 65.5 22.8 5.4 19.5

0.8 29.6 44.9 73.0 91.8 21.0 11.8 33.6 69.9 79.7 12.5 7.0 30.9 52.3

d) L̂MW -type test: Power (T = 200)

d0 -0.2 0 0.2

�1 �0 �1n d1 -0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

-0.8 92.0 65.2 49.9 71.3 99.7 92.0 63.1 51.0 71.5 99.6 91.8 62.7 51.8

0 -0.5 -0.5 32.0 6.8 24.3 77.0 82.7 31.0 6.5 26.4 77.8 83.6 28.6 6.2 27.5

-0.2 30.9 45.4 85.4 99.3 57.7 30.0 45.2 86.0 99.40 56.9 29.0 46.0 86.8

0.2 93.4 50.6 13.4 21.4 99.7 90.9 45.1 13.2 21.2 99.6 90.3 42.5 13.1

0 0.5 0.5 32.4 6.6 23.4 74.8 81.1 28.0 6.2 23.1 75.0 80.6 26.2 5.9 23.2

0.8 12.6 51.6 93.2 99.8 11.80 11.9 52.0 93.4 99.7 11.0 12.3 54.2 93.6

-0.8 100 100 100 97.8 100 100 99.5 91.3 85.0 99.9 98.7 87.4 68.5

0.5 -0.5 -0.5 100 100 99.5 96.9 99.7 99.3 92.3 75.7 86.1 95.2 77.4 42.2 45.6

-0.2 100 100 99.9 99.9 99.1 98.3 95.8 95.7 99.6 86.5 72.0 70.5 89.9

0.2 98.9 91.6 57.5 41.4 99.4 95.4 66.6 26.0 27.4 99.7 92.0 49.6 16.1

0.5 0.5 0.5 81.3 52.8 50.4 79.8 84.6 48.6 18.4 31.6 75.9 82.0 33.1 9.0 26.0

0.8 46.7 68.8 94.8 99.8 27.5 20.8 57.6 94.0 99.7 15.3 15.4 56.1 93.9

Note: Rejection probabilities of 5% test for joint break in d; � and � at �0 = 0:5; �0 = 0; �
2
0 = 1:

Figures in bold characters correspond to simulated sizes.
42



Table 8: Simulated performance of sequential testing procedure for the number
of breaks with LMW-type tests for a joint break in long memory and level
(unknown break fractions)

Detected number of breaks Break fraction estimation

0 1 2 3 �̂0 �̂1

a) (d0; d1; d2) = (0; 0:4; 0) and (�0; �1; �2) = (0; 0:5; 0)

T=200 60.6 17.4 20.2 1.8 0.37 (0.077) 0.65 (0.057)

T=500 15.5 7.0 71.9 5.6 0.35 (0.052) 0.65 (0.050)

b) (d0; d1; d2) = (�0:4; 0; 0:4) and (�0; �1; �2) = (0; 0:5; 1)
T=200 1.4 47.1 46.2 5.3 0.34 (0.046) 0.67 (0.075)

T=500 0 16.3 78.0 5.7 0.34 (0.023) 0.67 (0.057)

c) (d0; d1; d2) = (0; 0:2;�0:2) and (�0; �1; �2) = (0; 0:5; 1)
T=200 1.3 79.8 16.8 2.1 0.35 (0.077) 0.66 (0.076)

T=500 0 39.3 54.6 6.1 0.35 (0.060) 0.66 (0.046)

Note: Proportion (in %) of detected number of breaks (left) and means and standard errors (in brackets)

of break fraction estimates for the cases in which correctly two breaks are detected (right).

5% test for joint break in d and �; � = 0:15; �0= 1=3; �1= 2=3; �
2
0= 1:

Table 9: Breaks in the forward discount series
a) Detection of breaks by the LMW-type test with AR lag order selection by the BG procedure

Country number of breaks break dates

Canada 1 1992(10)

France 2 1988(3), 1992(9)

Germany 1 1992(9)

Italy 2 1987(12), 1994(2)

U.K. 3 1981(8), 1990(2), 1992(7)

Note: Break dates from applying the sup-L̂MW T -type test for joint breaks in d, � and �:

b) Detection of the source of breaks by the robusti�ed LMW-type test

Country break dates

Canada 1992(10): (d; �)� ; ���

France 1988(3): (d; �)�� ; ��� 1992(9): (d; �)�� ; ���

Germany 1992(9): ���

Italy 1987(12): (d; �)�� ; ��� 1994(2): (d; �)�� ; ���

U.K. 1981(8): ��� 1990(2): (d; �)�� ; ��� 1992(7): (d; �)�� ; ���

Note: * and ** denote statistical signi�cance of the LMW T -type test at the 10% and 5% levels,

respectively.
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Figure 2: Distribution of break fraction estimates for LM and LMW-type tests
a) LM test

b) LMW-type test

Note: Break at �0 = 0:5 in memory from 0 to 0.4 and/or in level from 0 to 0.5. T=200 (yellow) and 500 (blank).
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Figure 3: Forward discount series: break dates and long memory estimates
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Note: Vertical dashed and solid lines display break dates reported by Choi and Zivot (2007) and by the LMW-type

test procedure respectively. Horizontal lines indicate the estimated long memory parameters within each regime.
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